[1]

Borjigin G, Wei F, Jiang S, Li Q, Yang C. 2023. Extraction, purification, structural characterization and biological activity of polysaccharides from Fritillaria: a review. International Journal of Biological Macromolecules 242:124817

doi: 10.1016/j.ijbiomac.2023.124817
[2]

Wu F, Tian M, Sun Y, Wu C, Liu X. 2022. Efficacy, chemical composition, and pharmacological effects of herbal drugs derived from Fritillaria cirrhosa D. Don and Fritillaria thunbergii Miq. Frontiers in Pharmacology 13:985935

doi: 10.3389/fphar.2022.985935
[3]

Hao DC, Gu XJ, Xiao PG, Peng Y. 2013. Phytochemical and biological research of Fritillaria Medicine Resources. Chinese Journal of Natural Medicines 11:330−44

doi: 10.1016/S1875-5364(13)60050-3
[4]

Pan F, Wu W, Dong P, Hu B, Guan L, et al. 2017. Simultaneous determination of 10 nucleosides and nucleobases from different cultivation years of Fritillaria unibracteata var. wabuensis by HPLC-DAD. Journal of Chinese Pharmaceutical Sciences 26:346−54

[5]

Cunningham AB, Brinckmann JA, Pei SJ, Luo P, Schippmann U, et al. 2018. High altitude species, high profits: can the trade in wild harvested Fritillaria cirrhosa (Liliaceae) be sustained? Journal of Ethnopharmacology 223:142−51

doi: 10.1016/j.jep.2018.05.004
[6]

Valdés-Correcher E, Sitters J, Wassen M, Brion N, Olde Venterink H. 2019. Herbivore dung quality affects plant community diversity. Scientific Reports 9:5675

doi: 10.1038/s41598-019-42249-z
[7]

Van Der Weerden TJ, Luo J, De Klein CAM, Hoogendoorn CJ, Littlejohn RP, et al. 2011. Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agriculture, Ecosystems & Environment 141:426−36

doi: 10.1016/j.agee.2011.04.007
[8]

da Cunha Honorato A, Maciel JFA, De Assis RMA, Nohara GA, De Carvalho AA, et al. 2022. Combining green manure and cattle manure to improve biomass, essential oil, and thymol production in Thymus vulgaris L. Industrial Crops and Products 187:115469

doi: 10.1016/j.indcrop.2022.115469
[9]

Du TY, He HY, Zhang Q, Lu L, Mao WJ, et al. 2022. Positive effects of organic fertilizers and biofertilizers on soil microbial community composition and walnut yield. Applied Soil Ecology 175:104457

doi: 10.1016/j.apsoil.2022.104457
[10]

Jia X, Wang Y, Zhang Q, Lin S, Zhang Y, et al. 2023. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. Frontiers in Plant Science 14:1179960

doi: 10.3389/fpls.2023.1179960
[11]

Yang R, Mo Y, Liu C, Wang Y, Ma J, et al. 2016. The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.). PLoS One 11:e0156515

doi: 10.1371/journal.pone.0156515
[12]

Zhang S, Sun L, Wang Y, Fan K, Xu Q, et al. 2020. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiology 20:190

doi: 10.1186/s12866-020-01871-y
[13]

Chen J, Li J, Shen W, Xu H, Li Y, et al. 2019. The structure and species co-occurrence networks of soil denitrifying bacterial communities differ between a coniferous and a broadleaved forests. Microorganisms 7:361

doi: 10.3390/microorganisms7090361
[14]

Liu J, Sui Y, Yu Z, Shi Y, Chu H, et al. 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology and Biochemistry 70:113−22

doi: 10.1016/j.soilbio.2013.12.014
[15]

Ren C, Zhao F, Kang D, Yang G, Han X, et al. 2016. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management 376:59−66

doi: 10.1016/j.foreco.2016.06.004
[16]

Wu C, Tu C, Wang Z, Fan J, Lv Z, et al. 2023. The effect of clearing diseased wood on the soil's physicochemical properties in black pine forests. Sustainability 15:15980

doi: 10.3390/su152215980
[17]

DeForest JL. 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry 41:1180−86

doi: 10.1016/j.soilbio.2009.02.029
[18]

Liu C, Liu S, Tse WM, Tse KWG, Erbu A, et al. 2023. A distinction between Fritillaria Cirrhosa Bulbus and Fritillaria Pallidiflora Bulbus via LC–MS/MS in conjunction with principal component analysis and hierarchical cluster analysis. Scientific Reports 13:2735

doi: 10.1038/s41598-023-29631-8
[19]

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537−41

doi: 10.1128/AEM.01541-09
[20]

Lu Z, Zhou Y, Li Y, Li C, Lu M, et al. 2023. Effects of partial substitution of chemical fertilizer with organic manure on the activity of enzyme and soil bacterial communities in the mountain red soil. Frontiers in Microbiology 14:1234904

doi: 10.3389/fmicb.2023.1234904
[21]

Zhai L, Wang Z, Zhai Y, Zhang L, Zheng M, et al. 2022. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil and Tillage Research 217:105287

doi: 10.1016/j.still.2021.105287
[22]

Zhou Z, Zhang S, Jiang N, Xiu W, Zhao J, et al. 2022. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Frontiers in Environmental Science 10:1058071

doi: 10.3389/fenvs.2022.1058071
[23]

Xie H, Wei Y, Yi C, Wang Y, Zhao Z, et al. 2023. Effects of organic fertilizers with different maturities on soil improvement and soybean yield. Agronomy 13:3004

doi: 10.3390/agronomy13123004
[24]

Gao P, Zhang T, Lei X, Cui X, Lu Y, et al. 2023. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture 22:2221−32

doi: 10.1016/j.jia.2023.02.037
[25]

Wang H, Xu J, Liu X, Zhang D, Li L, et al. 2019. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research 195:104382

doi: 10.1016/j.still.2019.104382
[26]

Cordero I, Snell H, Bardgett RD. 2019. High throughput method for measuring urease activity in soil. Soil Biology and Biochemistry 134:72−77

doi: 10.1016/j.soilbio.2019.03.014
[27]

Li Y, Shen Q, An X, Xie Y, Liu X, et al. 2022. Organomineral fertilizer application enhances Perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils. Frontiers in Microbiology 13:1058067

doi: 10.3389/fmicb.2022.1058067
[28]

Ji R, Dong G, Shi W, Min J. 2017. Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. Sustainability 9:841

doi: 10.3390/su9050841
[29]

Liu H, Li C, Lin Y, Chen Y, Zhang Z, et al. 2023. Biochar and organic fertilizer drive the bacterial community to improve the productivity and quality of Sophora tonkinensis in cadmium-contaminated soil. Frontiers in Microbiology 14:1334338

doi: 10.3389/fmicb.2023.1334338
[30]

Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. 2017. Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology 38:155−63

doi: 10.1016/j.pbi.2017.04.018
[31]

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634−63

doi: 10.1111/1574-6976.12028
[32]

Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research 40:45−58

doi: 10.1016/j.jare.2021.11.020
[33]

Zhou X, Yang Y, Yin Q, Zhang X, Li M. 2021. Application potential of Comamonas testosteroni ZG2 for vegetable cultivation in nickel and cadmium polluted soil. Environmental Technology & Innovation 23:101626

doi: 10.1016/j.eti.2021.101626
[34]

Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. 2016. Fungal invasion of the rhizosphere microbiome. The ISME Journal 10:265−68

doi: 10.1038/ismej.2015.82
[35]

Du T, Hu Q, He H, Mao W, Yang Z, et al. 2023. Long-term organic fertilizer and biofertilizer application strengthens the associations between soil quality index, network complexity, and walnut yield. European Journal of Soil Biology 116:103492

doi: 10.1016/j.ejsobi.2023.103492
[36]

Xu Y, Liu X, Yan L, Huang X, Wang J. 2024. The addition of organic fertilizer can reduce the dependence of dryland yield on rainfall-based on a 32-year long-term study. Science of The Total Environment 915:170152

doi: 10.1016/j.scitotenv.2024.170152
[37]

Yuan J, Wang J, Ye J, Dai A, Zhang L, et al. 2023. Long-term organic fertilization enhances potassium uptake and yield of sweet potato by expanding soil aggregates-associated potassium stocks. Agriculture, Ecosystems & Environment 358:108701

doi: 10.1016/j.agee.2023.108701
[38]

Zheng Z, Li P, Xiong Z, Ma T, Mathivanan K, et al. 2022. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice. Chemosphere 301:134655

doi: 10.1016/j.chemosphere.2022.134655
[39]

Tagele SB, Kim RH, Jeong M, Lim K, Jung DR, et al. 2023. Soil amendment with cow dung modifies the soil nutrition and microbiota to reduce the ginseng replanting problem. Frontiers in Plant Science 14:1072216

doi: 10.3389/fpls.2023.1072216
[40]

Wang H, Nie Y, Butterly CR, Wang L, Chen Q, et al. 2017. Fertilization alters microbial community composition and functional patterns by changing the chemical nature of soil organic carbon: a field study in a Halosol. Geoderma 292:17−24

doi: 10.1016/j.geoderma.2017.01.006
[41]

Chen Z, Li Y, Hu M, Xiong Y, Huang Q, et al. 2023. Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant–microbe interactions in saline-sodic soil. Science of The Total Environment 879:163113

doi: 10.1016/j.scitotenv.2023.163113
[42]

Tang Q, Xia Y, Ti C, Shan J, Zhou W, et al. 2023. Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere 33:407−20

doi: 10.1016/j.pedsph.2022.06.044
[43]

Wang D, Sun C, Cui M, Shen X, Zhang Y, et al. 2022. An integrated analysis of transcriptome and metabolome provides insights into the responses of maize (Zea mays L.) roots to different straw and fertilizer conditions. Environmental and Experimental Botany 194:104732

doi: 10.1016/j.envexpbot.2021.104732
[44]

Santolini M, Barabási AL. 2018. Predicting perturbation patterns from the topology of biological networks. Proceedings of the National Academy of Sciences of the United States of America 115:E6375−E6383

doi: 10.1073/pnas.1720589115
[45]

Li G, Niu W, Ma L, Du Y, Zhang Q, et al. 2023. Legacy effects of wheat season organic fertilizer addition on microbial co-occurrence networks, soil function, and yield of the subsequent maize season in a wheat-maize rotation system. Journal of Environmental Management 347:119160

doi: 10.1016/j.jenvman.2023.119160
[46]

Yang Y, Li G, Min K, Liu T, Li C, et al. 2022. The potential role of fertilizer-derived exogenous bacteria on soil bacterial community assemblage and network formation. Chemosphere 287:132338

doi: 10.1016/j.chemosphere.2021.132338
[47]

Sun R, Chen Y, Han W, Dong W, Zhang Y, et al. 2020. Different contribution of species sorting and exogenous species immigration from manure to soil fungal diversity and community assemblage under long-term fertilization. Soil Biology and Biochemistry 151:108049

doi: 10.1016/j.soilbio.2020.108049
[48]

Freiling M, Von Tucher S, Schmidhalter U. 2022. Factors influencing phosphorus placement and effects on yield and yield parameters: a meta-analysis. Soil and Tillage Research 216:105257

doi: 10.1016/j.still.2021.105257
[49]

Feng J, Zhu B. 2019. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biology and Biochemistry 135:38−47

doi: 10.1016/j.soilbio.2019.04.008
[50]

Liu J, Shu A, Song W, Shi W, Li M, et al. 2021. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 404:115287

doi: 10.1016/j.geoderma.2021.115287
[51]

Li J, Cooper JM, Lin Z, Li Y, Yang X, et al. 2015. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology 96:75−87

doi: 10.1016/j.apsoil.2015.07.001
[52]

Ma Y, Shen S, Wan C, Wang S, Yang F, et al. 2023. Organic fertilizer substitution over six years improves the productivity of garlic, bacterial diversity, and microbial communities network complexity. Applied Soil Ecology 182:104718

doi: 10.1016/j.apsoil.2022.104718
[53]

Araujo R, Gupta VVSR, Reith F, Bissett A, Mele P, et al. 2020. Biogeography and emerging significance of Actinobacteria in Australia and Northern Antarctica soils. Soil Biology and Biochemistry 146:107805

doi: 10.1016/j.soilbio.2020.107805