[1]

Liu W, Chau KT, Tian X, Wang H, Hua Z. 2023. Smart wireless power transfer-opportunities and challenges. Renewable & Sustainable Energy Reviews 180:113298

doi: 10.1016/j.rser.2023.113298
[2]

Mi CC, Buja G, Choi SY, Rim CT. 2016. Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Transactions on Industrial Electronics 63:6533−45

doi: 10.1109/TIE.2016.2574993
[3]

Dai X, Jiang JC, Wu JQ. 2019. Charging area determining and power enhancement method for multiexcitation unit configuration of wirelessly dynamic charging EV system. IEEE Transactions on Industrial Electronics 66:4086−96

doi: 10.1109/TIE.2018.2860537
[4]

Jiang C, Chau KT, Liu W, Liu C, Han W, et al. 2019. An LCC-compensated multiple-frequency wireless motor system. IEEE Transactions on Industrial Informatics 15:6023−34

doi: 10.1109/TII.2019.2904798
[5]

Wang H, Liu W, Chau KT. 2022. Wireless motors - a new breed of power electronics drives. 2022 IEEE 9th International Conference on Power Electronics Systems and Applications (PESA), 20-22 September 2022, Hong Kong, China. CLP Power Hong Kong Limited; P. LEO and CO. , LTD; The Hong Kong Electric Company, Limited: Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/pesa55501.2022.10038436

[6]

Liu W, Chau KT, Lee CHT, Cao LB, Jiang CQ. 2021. Frequency-modulated wireless direct-drive motor control. IEEE Transactions on Magnetics 57:8201907

doi: 10.1109/TMAG.2020.3021708
[7]

Li Y, Hu J, Li X, Chen F, Xu Q, et al. 2020. Analysis, design, and experimental verification of a mixed high-order compensations-based WPT system with constant current outputs for driving multistring LEDs. IEEE Transactions on Industrial Electronics 67:203−13

doi: 10.1109/TIE.2019.2896255
[8]

Liu W, Chau KT, Lee CHT, Jiang C, Han W, et al. 2020. Wireless energy-on-demand using magnetic Quasi-resonant coupling. IEEE Transactions on Power Electronics 35:9057−69

doi: 10.1109/TPEL.2020.2973408
[9]

Zhang Z, Chau KT, Qiu C, Liu C. 2015. Energy encryption for wireless power transfer. IEEE Transactions on Power Electronics 30:5237−46

doi: 10.1109/TPEL.2014.2363686
[10]

Liu W, Chau KT, Chow CCT, Lee CHT. 2022. Wireless energy trading in traffic internet. IEEE Transactions on Power Electronics 37:4831−41

doi: 10.1109/TPEL.2021.3118458
[11]

Covic GA, Boys JT. 2013. Inductive power transfer. Proceedings of the IEEE 101:1276−89

doi: 10.1109/JPROC.2013.2244536
[12]

Nguyen DH. 2020. Electric vehicle - wireless charging-discharging lane decentralized peer-to-peer energy trading. IEEE Access 8:179616−25

doi: 10.1109/ACCESS.2020.3027832
[13]

Feng H, Cai T, Duan S, Zhang X, Hu H, et al. 2018. A dual-side-detuned series-series compensated resonant converter for wide charging region in a wireless power transfer system. IEEE Transactions on Industrial Electronics 65:2177−88

doi: 10.1109/TIE.2017.2745455
[14]

Kim M, Joo DM, Lee BK. 2019. Design and control of inductive power transfer system for electric vehicles considering wide variation of output voltage and coupling coefficient. IEEE Transactions on Power Electronics 34:1197−208

doi: 10.1109/TPEL.2018.2835161
[15]

Huang Y, Shinohara N, Mitani T. 2014. A constant efficiency of rectifying circuit in an extremely wide load range. IEEE Transactions on Microwave Theory and Techniques 62:986−93

doi: 10.1109/TMTT.2013.2287676
[16]

Liu C, Han W, Hu YH, Zhang BW. 2024. Simultaneous identification of multiple parameters in wireless power transfer systems using primary variable capacitors. Applied Sciences 14:793

doi: 10.3390/app14020793
[17]

Yang Y, Tan SC, Hui SYR. 2020. Fast hardware approach to determining mutual coupling of series-series-compensated wireless power transfer systems with active rectifiers. IEEE Transactions on Power Electronics 35:11026−38

doi: 10.1109/TPEL.2020.2977140
[18]

Liu Y, Feng H. 2020. Maximum efficiency tracking control method for WPT system based on dynamic coupling coefficient identification and impedance matching network. Ieee Journal of Emerging and Selected Topics in Power Electronics 8:3633−43

doi: 10.1109/JESTPE.2019.2935219
[19]

Guo Y, Zhang Y, Li S, Tao C, Wang L. 2020. Load parameter joint identification of wireless power transfer system based on the DC input current and phase-shift angle. IEEE Transactions on Power Electronics 35:10542−53

doi: 10.1109/TPEL.2020.2981651
[20]

Dai R, Zhou W, Chen Y, Zhu Z, Mai R. 2022. Pulse density modulation based mutual inductance and load resistance identification method for wireless power transfer system. IEEE Transactions on Power Electronics 37:9933−43

doi: 10.1109/TPEL.2022.3153657
[21]

Yang JJ, Chen W. 2019. Dynamic niche artificial bee colony algorithm for output control of MCR-WPT system. IET Microwaves Antennas & Propagation 13:1240−47

doi: 10.1049/iet-map.2018.5914
[22]

Shu X, Wu G, Jiang Y. 2023. Comparative analysis of SS, SP, PP and PS topologies for magnetic coupled wireless power transfer system composed of the negative resistor. Energies 16:7336

doi: 10.3390/en16217336
[23]

Liu W, Chau KT, Lee CHT, Han W, Tian X, et al. 2020. Full-range soft-switching pulse frequency modulated wireless power transfer. IEEE Transactions on Power Electronics 35:6533−47

doi: 10.1109/TPEL.2019.2952573
[24]

Dehghani M, Hubálovský Š, Trojovský P. 2021. Northern Goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access 9:162059−80

doi: 10.1109/ACCESS.2021.3133286
[25]

Trojovsky P, Dehghani M. 2023. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics 8:149

doi: 10.3390/biomimetics8020149
[26]

Hua Z, Chau KT, Han W, Liu W, Ching TW. 2022. Output-controllable efficiency-optimized wireless power transfer using hybrid modulation. IEEE Transactions on Industrial Electronics 69:4627−36

doi: 10.1109/TIE.2021.3086733
[27]

Zhu G, Dong J, Grazian F, Bauer P. 2023. A parameter recognition-based impedance tuning method for SS-compensated wireless power transfer systems. IEEE Transactions on Power Electronics 38:13298−314

doi: 10.1109/TPEL.2023.3302256