| [1] |
Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer − an overview. IEEE Transactions on Industrial Electronics 66(2):1044−58 doi: 10.1109/TIE.2018.2835378 |
| [2] |
Ramakrishnan V, Savio AD, Balaji C, Rajamanickam N, Kotb H, et al. 2024. A comprehensive review on efficiency enhancement of wireless charging system for the electric vehicles applications. IEEE Access 12:46967−94 doi: 10.1109/ACCESS.2024.3378303 |
| [3] |
Ma Q, Xu J, Pang S, Li X, Li H, et al. 2024. High efficiency three-dimensional wireless power transfer system using cylindrical transmitting coil. IET Power Electronics 17(15):2288−300 doi: 10.1049/pel2.12787 |
| [4] |
Li Y, Hu J, Li X, Chen F, Xu Q, et al. 2020. Analysis, design, and experimental verification of a mixed high-order compensations-based WPT system with constant current outputs for driving multistring LEDs. IEEE Transactions on Industrial Electronics 67(1):203−13 doi: 10.1109/TIE.2019.2896255 |
| [5] |
Haerinia M, Shadid R. 2020. Wireless power transfer approaches for medical implants: a review. Signals 1(2):209−29 doi: 10.3390/signals1020012 |
| [6] |
Li Z, Li J, Li S, Yu Y, Yi J. 2022. Design and optimization of asymmetric and reverse series coil structure for obtaining Quasi-constant mutual inductance in dynamic wireless charging system for electric vehicles. IEEE Transactions on Vehicular Technology 71(3):2560−72 doi: 10.1109/TVT.2021.3138072 |
| [7] |
Tian X, Liu W, Chau KT, Goetz SM. 2024. Omnidirectional magnetic resonant extender design for underwater wireless charging system. IEEE Journal of Emerging and Selected Topics in Power Electronics 12(4):3325−33 doi: 10.1109/JESTPE.2023.3318130 |
| [8] |
Mai R, Chen Y, Li Y, Zhang Y, Cao G, et al. 2017. Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter. IEEE Transactions on Power Electronics 32(8):5897−906 doi: 10.1109/TPEL.2017.2654360 |
| [9] |
Yang TD, Quan DZ, Kang CT, Yu JW. 2017. Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank. IEEE Transactions on Power Electronics 32(1):471−78 doi: 10.1109/TPEL.2016.2523121 |
| [10] |
Liu N, Habetler TG. 2015. Design of a universal inductive charger for multiple electric vehicle models. IEEE Transactions on Power Electronics 30(11):6378−90 doi: 10.1109/TPEL.2015.2394734 |
| [11] |
Yang Y, Jia W, Liang D, Xue J, Li Y. 2023. A self-switching wireless power transfer system based on hybrid topology of LCC-LCC/S with constant current and constant voltage. Transactions of China Electrotechnical Society 38(18):4823−4837+4852 doi: 10.19595/j.cnki.1000-6753.tces.221236 |
| [12] |
Zhang L, Li H, Guo Q, Xie S, Yang Y. 2022. Research on constant voltage/current output of LCC-S envelope modulation wireless power transfer system. Energies 15(4):1562 doi: 10.3390/en15041562 |
| [13] |
Rehman M, Nallagownden P, Baharudin Z. 2020. Design of a new hybrid topology of WPT system to achieve load-independent constant-current and constant-voltage output. Symmetry 12(9):1453 doi: 10.3390/sym12091453 |
| [14] |
Tran DH, Vu VB, Choi W. 2018. Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE Transactions on Power Electronics 33(1):175−87 doi: 10.1109/TPEL.2017.2662067 |
| [15] |
Yang L, Li X, Liu S, Xu Z, Cai C, et al. 2019. Analysis and design of three-coil structure WPT system with constant output current and voltage for battery charging applications. IEEE Access 7:87334−44 doi: 10.1109/ACCESS.2019.2925388 |
| [16] |
Lu J, Zhu G, Lin D, Zhang Y, Wang H, et al. 2021. Realizing constant current and constant voltage outputs and input zero phase angle of wireless power transfer systems with minimum component counts. IEEE Transactions on Intelligent Transportation Systems 22(1):600−10 doi: 10.1109/TITS.2020.2985658 |
| [17] |
Gautam KK, Chatterjee A, Santra SB, Prasad D. 2025. Constant Frequency CC-CV Operation of Isolated LLC Resonant DC-DC Converter Using Switched Capacitor Network for WCS. IEEE Transactions on Power Electronics 40(1):64−70 doi: 10.1109/TPEL.2024.3453512 |
| [18] |
Lu W, Zhao J, Chen X, Fan Q, Zhang C. 2023. Bilateral control strategy based on LCL-S compensation network wireless charging system without communication. International Journal of Automotive Technology 24(1):171−78 doi: 10.1007/s12239-023-0015-8 |
| [19] |
Vaka R, Keshri RK. 2020. Reconfigurable WPT system for load-independent CC and CV output with transmitting-side control. IET Electric Power Applications 14(4):685−94 doi: 10.1049/iet-epa.2019.0406 |
| [20] |
Huang ZC, Wong SC, Tse CK. 2017. Design of a single-stage inductive-power-transfer converter for efficient EV battery charging. IEEE Transactions on Vehicular Technology 66(7):5808−21 doi: 10.1109/TVT.2016.2631596 |
| [21] |
Song K, Li Z, Jiang J, Zhu C. 2018. Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller. IEEE Transactions on Power Electronics 33(9):8065−80 doi: 10.1109/TPEL.2017.2767099 |
| [22] |
Li D, Wu X, An C, Gao J, Gao W. 2023. Implementation of ZVS for double-sided LCC inductive coupled wireless power transfer system under constant current/constant voltage operation mode. IEEE Access 11:29726−43 doi: 10.1109/ACCESS.2023.3248620 |
| [23] |
Wang DS, Deng X, Guan ZM, Liu SL, Yang YQ, et al. 2024. Analysis of output characteristics of wireless power transfer system based on LCC/S-S hybrid compensation structure. Circuit World 50(1):172−83 doi: 10.1108/CW-09-2022-0260 |