| [1] |
Lieberman JA, Gupta RS, Knibb RC, Haselkorn T, Tilles S, et al. 2021. The global burden of illness of peanut allergy: a comprehensive literature review. Allergy 76:1367−84 doi: 10.1111/all.14666 |
| [2] |
Tan THT, Ellis JA, Saffery R, Allen KJ. 2012. The role of genetics and environment in the rise of childhood food allergy. Clinical & Experimental Allergy 42:20−29 doi: 10.1111/j.1365-2222.2011.03823.x |
| [3] |
Campbell DE, Boyle RJ, Thornton CA, Prescott SL. 2015. Mechanisms of allergic disease–environmental and genetic determinants for the development of allergy. Clinical & Experimental Allergy 45:844−58 doi: 10.1111/cea.12531 |
| [4] |
Loh W, Tang MLK. 2018. The epidemiology of food allergy in the global context. International Journal of Environmental Research and Public Health 15:2043 doi: 10.3390/ijerph15092043 |
| [5] |
Du Toit G, Sayre PH, Roberts G, Sever ML, Lawson K, et al. 2016. Effect of avoidance on peanut allergy after early peanut consumption. The New England Journal of Medicine 374:1435−43 doi: 10.1056/NEJMoa1514209 |
| [6] |
Variath MT, Janila P. 2017. Economic and academic importance of peanut. In The peanut genome. Cham: Springer. pp. 7−26. doi:10.1007/978-3-319-63935-2_2 |
| [7] |
Jiang S, Wang S, Sun Y, Zhou Z, Wang G. 2011. Molecular characterization of major allergens Ara h 1, 2, 3 in peanut seed. Plant Cell Reports 30:1135−43 doi: 10.1007/s00299-011-1022-1 |
| [8] |
Koppelman SJ, Knol EF, Vlooswijk RAA, Wensing M, Knulst AC, et al. 2003. Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization. Allergy 58:1144−51 doi: 10.1034/j.1398-9995.2003.00259.x |
| [9] |
Palmer GW, Dibbern DA Jr, Wesley Burks A, Bannon GA, Allan Bock S, et al. 2005. Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clinical Immunology 115:302−12 doi: 10.1016/j.clim.2005.02.011 |
| [10] |
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, et al. 2019. Peanut allergy: characteristics and approaches for mitigation. Comprehensive Reviews in Food Science and Food Safety 18:1361−87 doi: 10.1111/1541-4337.12472 |
| [11] |
Zhou Y, Wang JS, Yang XJ, Lin DH, Gao YF, et al. 2013. Peanut allergy, allergen composition, and methods of reducing allergenicity: a review. International Journal of Food Science 2013:909140 doi: 10.1155/2013/909140 |
| [12] |
Harshitha T, Parinitha A, Gawali PP, Somya A, Yannam SK. 2024. Grain Processing and Baking Technology. In Frontiers in Food Biotechnology. Singapore: Springer. pp. 91−119 . doi: 10.1007/978-981-97-3261-6_7 |
| [13] |
Nunavath RS, Singh MT, Chittipolu A, Yerrakula G. 2024. Food processing technology to produce hypoallergenic food with high quality. In Food Allergies: Processing Technologies for Allergenicity Reduction, ed. Lajnaf R. Boca Raton: CRC Press. 348 pp. doi: 10.1201/9781003433781 |
| [14] |
Fu G, Zhong Y, Li C, Li Y, Lin X, et al. 2010. Epigenetic regulation of peanut allergen gene Ara h 3 in developing embryos. Planta 231:1049−60 doi: 10.1007/s00425-010-1111-3 |
| [15] |
Brackett NF, Pomés A, Chapman MD. 2022. New frontiers: precise editing of allergen genes using CRISPR. Frontiers in Allergy 2:821107 doi: 10.3389/falgy.2021.821107 |
| [16] |
Wang M, Schedel M, Gelfand EW. 2024. Gene editing in allergic diseases: identification of novel pathways and impact of deleting allergen genes. Journal of Allergy and Clinical Immunology 154:51−58 doi: 10.1016/j.jaci.2024.03.016 |
| [17] |
Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, et al. 2018. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma & Clinical Immunology 14:39 doi: 10.1186/s13223-018-0259-4 |
| [18] |
Bégin P, Nadeau KC. 2014. Epigenetic regulation of asthma and allergic disease. Allergy, Asthma & Clinical Immunology 10:27 doi: 10.1186/1710-1492-10-27 |
| [19] |
Kukkonen AK, Pelkonen AS, Mäkinen-Kiljunen S, Voutilainen H, Mäkelä MJ. 2015. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy 70:1239−45 doi: 10.1111/all.12671 |
| [20] |
Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. 2020. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. Journal of Allergy and Clinical Immunology 146:621−630. e5 doi: 10.1016/j.jaci.2020.03.026 |
| [21] |
Asarnoj A, Nilsson C, Lidholm J, Glaumann S, Östblom E, et al. 2012. Peanut component Ara h 8 sensitization and tolerance to peanut. Journal of Allergy and Clinical Immunology 130:468−72 doi: 10.1016/j.jaci.2012.05.019 |
| [22] |
Čelakovská J, Čermákova E, Andrýs C, Boudkova P, Krejsek J. 2024. Sensitization to latex and food allergens in atopic dermatitis patients according to ALEX2 Allergy Xplorer test. Molecular Immunology 175:89−102 doi: 10.1016/j.molimm.2024.09.002 |
| [23] |
Bublin M, Breiteneder H. 2014. Developing therapies for peanut allergy. International Archives of Allergy and Immunology 165:179−94 doi: 10.1159/000369340 |
| [24] |
Viquez O, Dodo H, Konan K. 2005. Genetic modification of peanut as a solution to peanut allergy. In Food Biotechnology. 2nd Edition. Boca Raton: CRC Press. doi: 10.1201/9781420027976.ch2.17 |
| [25] |
Djeghim H, Bellil I, Benslama O, Lekmine S, Temim E, et al. 2024. Effects of genetic diversity on the allergenicity of peanut (Arachis hypogaea) proteins: identification of the hypoallergenic accessions using BALB/c mice model and in silico analysis of Ara h 3 allergen cross-reactivity. Journal of Proteomics 306:105264 doi: 10.1016/j.jprot.2024.105264 |
| [26] |
Cabanillas B, Jappe U, Novak N. 2018. Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Molecular Nutrition & Food Research 62:1700446 doi: 10.1002/mnfr.201700446 |
| [27] |
Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, et al. 2008. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. Journal of Agricultural and Food Chemistry 56:11225−33 doi: 10.1021/jf802600r |
| [28] |
Özgür M, Uçar A. 2024. Food allergen risks in genetically modified foods: current approaches. In Food Safety: Contaminants and Risk Assessment, eds. Kuddus M, Ashraf SA, Rahman P. 1st Edition. Boca Raton: CRC Press. pp. 42−53. di: 10.1201/9781003333913 |
| [29] |
Anagnostou K, Clark A. 2015. The management of peanut allergy. Archives of Disease in Childhood 100:68−72 doi: 10.1136/archdischild-2014-306152 |
| [30] |
Restani P, Ballabio C, Corsini E, Fiocchi A, Isoardi P, et al. 2005. Identification of the basic subunit of Ara h 3 as the major allergen in a group of children allergic to peanuts. Annals of Allergy, Asthma & Immunology 94:262−66 doi: 10.1016/S1081-1206(10)61306-3 |
| [31] |
Al Aboud NM, Tupper C, Jialal I. 2018. Genetics, epigenetic mechanism. In Study Guide. Treasure Island (FL): StatPearls Publishing. https://europepmc.org/article/nbk/nbk532999 |
| [32] |
O’Hagan HM. 2014. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. Environmental and Molecular Mutagenesis 55:278−91 doi: 10.1002/em.21830 |
| [33] |
Roth GV, Gengaro IR, Qi LS. 2024. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chemical Biology 31:1422−46 doi: 10.1016/j.chembiol.2024.07.007 |
| [34] |
Mazzio EA, Soliman KF. 2012. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119−30 doi: 10.4161/epi.7.2.18764 |
| [35] |
Conner JA, Guimaraes LA, Zhang Z, Marasigan K, Chu Y, et al. 2024. Multiplexed silencing of 2S albumin genes in peanut. Plant Biotechnology Journal 22:2438−40 doi: 10.1111/pbi.14357 |
| [36] |
Miglani GS, Kaur A, Kaur L. 2020. Plant gene expression control using genome-and epigenome-editing technologies. Journal of Crop Improvement 34:1−63 doi: 10.1080/15427528.2019.1678541 |
| [37] |
van Esse HP, Reuber TL, van der Does D. 2020. Genetic modification to improve disease resistance in crops. New Phytologist 225:70−86 doi: 10.1111/nph.15967 |
| [38] |
Tirnaz S, Batley J. 2019. DNA methylation: toward crop disease resistance improvement. Trends in Plant Science 24:1137−50 doi: 10.1016/j.tplants.2019.08.007 |
| [39] |
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, et al. 2024. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. Physiology and Molecular Biology of Plants 30:1759−75 doi: 10.1007/s12298-024-01534-6 |
| [40] |
Thakore PI, Black JB, Hilton IB, Gersbach CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nature Methods 13:127−37 doi: 10.1038/nmeth.3733 |
| [41] |
Seem K, Kaur S, Kumar S, Mohapatra T. 2024. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Critical Reviews in Biochemistry and Molecular Biology 59:69−98 doi: 10.1080/10409238.2024.2320659 |
| [42] |
Sharma Y, Patil P, Khatal MM, Huchchannanavar S, Rachana MN, et al. 2024. Biological and chemical factors influencing food allergies: a comprehensive review. Journal of Scientific Research and Reports 30:787−94 doi: 10.9734/jsrr/2024/v30i62095 |
| [43] |
Mohan C, Satish L, Muthubharathi BC, Selvarajan D, Easterling M, et al. 2022. CRISPR-Cas technology: A genome-editing powerhouse for molecular plant breeding. In Biotechnological innovations for environmental bioremediation, eds. Arora S, Kumar A, Ogita S, Yau YY. Singapore: Springer. pp. 803−79. doi: 10.1007/978-981-16-9001-3_32 |
| [44] |
Rajanathadurai J, Perumal E, Sindya J. 2024. Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects. Functional & Integrative Genomics 24:164 doi: 10.1007/s10142-024-01455-3 |
| [45] |
Konan KN, Ananga AO, Dodo H. 2015. Reducing peanut allergy risks by means of genetic modification. In Modification of Seed Composition to Promote Health and Nutrition. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. pp. 289−302. doi: 10.2134/agronmonogr51.c15 |
| [46] |
White BL, Shi X, Burk CM, Kulis M, Wesley Burks A, et al. 2014. Strategies to mitigate peanut allergy: production, processing, utilization, and immunotherapy considerations. Annual Review of Food Science and Technology 5:155−76 doi: 10.1146/annurev-food-030713-092443 |
| [47] |
Potaczek DP, Alashkar Alhamwe B, Miethe S, Garn H. 2021. Epigenetic mechanisms in allergy development and prevention. In Allergic diseases–from basic mechanisms to comprehensive management and prevention. Springer. pp. 331−57. doi: 10.1007/164_2021_475 |
| [48] |
Mousavi Khaneghah A, Mostashari P. 2024. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Critical Reviews in Food Science and Nutrition 65(14):2669−713 doi: 10.1080/10408398.2024.2349740 |
| [49] |
Kanafi MM, Tavallaei M. 2022. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene 830:146518 doi: 10.1016/j.gene.2022.146518 |
| [50] |
Pelletier S. 2016. Genome Editing with Targetable Nucleases. In Genome Editing. Cham: Springer. pp. 1-29. doi: 10.1007/978-3-319-34148-4_1 |
| [51] |
Parkhi V, Bhattacharya A, Char B. 2021. Multiomics technologies and genetic modification in plants: rationale, opportunities and reality. In Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II), ed. Kumar A, Kumar R, Shukla P, Patel HK. pp. 313−28. doi: 10.1007/978-981-16-2956-3_12 |
| [52] |
Gersbach CA, Gaj T, Barbas CF 3rd. 2014. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Accounts of Chemical Research 47:2309−18 doi: 10.1021/ar500039w |
| [53] |
Downward J. 2004. RNA interference. BMJ 328:1245−48 doi: 10.1136/bmj.328.7450.1245 |
| [54] |
Lee KH, Song Y, O’Sullivan M, Pereira G, Loh R, et al. 2017. The implications of DNA methylation on food allergy. International Archives of Allergy and Immunology 173:183−92 doi: 10.1159/000479513 |
| [55] |
Bhavsar P, Ahmad T, Adcock IM. 2008. The role of histone deacetylases in asthma and allergic diseases. Journal of Allergy and Clinical Immunology 121:580−84 doi: 10.1016/j.jaci.2007.12.1156 |
| [56] |
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. 2023. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta 257:78 doi: 10.1007/s00425-023-04110-6 |
| [57] |
Weinberg MS, Morris KV. 2013. Long non-coding RNA targeting and transcriptional de-repression. Nucleic Acid Therapeutics 23:9−14 doi: 10.1089/nat.2012.0412 |
| [58] |
Reyes AJ, Hosein AS, Ramcharan K, Perot S. 2020. Anaphylaxis and other allergic reactions to food: a global challenge. BMJ Case Reports 13:e231425 doi: 10.1136/bcr-2019-231425 |
| [59] |
Gray CL. 2020. Current controversies and future prospects for peanut allergy prevention, diagnosis and therapies. Journal of Asthma and Allergy 13:51−66 doi: 10.2147/JAA.S196268 |
| [60] |
Muthukumar J, Selvasekaran P, Lokanadham M, Chidambaram R. 2020. Food and food products associated with food allergy and food intolerance–An overview. Food Research International 138:109780 doi: 10.1016/j.foodres.2020.109780 |
| [61] |
Dodo H, Konan K, Viquez O. 2005. A genetic engineering strategy to eliminate peanut allergy. Current Allergy and Asthma Reports 5:67−73 doi: 10.1007/s11882-005-0058-0 |
| [62] |
Singh MB, Bhalla PL. 2008. Genetic engineering for removing food allergens from plants. Trends in Plant Science 13:257−60 doi: 10.1016/j.tplants.2008.04.004 |
| [63] |
Abady S, Shimelis H, Janila P, Mashilo J. 2019. Groundnut (Arachis hypogaea L.) improvement in sub-Saharan Africa: a review. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 69:528−45 doi: 10.1080/09064710.2019.1601252 |
| [64] |
Chizoba Ekezie FG, Cheng JH, Sun DW. 2018. Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends in Food Science & Technology 74:12−25 doi: 10.1016/j.jpgs.2018.01.007 |
| [65] |
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. 2024. Epigenome editing technologies for discovery and medicine. Nature Biotechnology 42:1199−217 doi: 10.1038/s41587-024-02320-1 |
| [66] |
Tadić V, Josipović G, Zoldoš V, Vojta A. 2019. CRISPR/Cas9-based epigenome editing: an overview of dCas9-based tools with special emphasis on off-target activity. Methods 164:109−19 doi: 10.1016/j.ymeth.2019.05.003 |
| [67] |
Li Q, Zhu P, Yu X, Xu J, Liu G. 2024. Physiological and molecular mechanisms of rice tolerance to salt and drought stress: advances and future directions. International Journal of Molecular Sciences 25:9404 doi: 10.3390/ijms25179404 |
| [68] |
Ming Y, Jiang L, Ji D. 2023. Epigenetic regulation in tomato fruit ripening. Frontiers in Plant Science 14:1269090 doi: 10.3389/fpls.2023.1269090 |
| [69] |
Chen S, Han J, Wu S, Guo S, Tang Y, et al. 2024. From non-coding RNAs to histone modification: The epigenetic mechanisms in tomato fruit ripening and quality regulation. Plant Physiology and Biochemistry 215:109070 doi: 10.1016/j.plaphy.2024.109070 |
| [70] |
Li Z, Gao Q, Liu Y, He C, Zhang X, et al. 2011. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233:1129−43 doi: 10.1007/s00425-011-1368-1 |
| [71] |
Long Y, Wang C, Liu C, Li H, Pu A, et al. 2024. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. Journal of Advanced Research 62:27−46 doi: 10.1016/j.jare.2023.09.016 |
| [72] |
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, et al. 2021. Epigenetics for crop improvement in times of global change. Biology 10:766 doi: 10.3390/biology10080766 |
| [73] |
Trerotola M, Relli V, Simeone P, Alberti S. 2015. Epigenetic inheritance and the missing heritability. Human Genomics 9:17 doi: 10.1186/s40246-015-0041-3 |
| [74] |
Movahedi A, Aghaei-Dargiri S, Li H, Zhuge Q, Sun W. 2023. CRISPR variants for gene editing in plants: biosafety risks and future directions. International Journal of Molecular Sciences 24:16241 doi: 10.3390/ijms242216241 |
| [75] |
Caradus JR. 2023. Processes for regulating genetically modified and gene edited plants. GM Crops & Food 14:1−41 doi: 10.1080/21645698.2023.2252947 |
| [76] |
Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, et al. 2019. Genome editing in plants: exploration of technological advancements and challenges. Cells 8:1386 doi: 10.3390/cells8111386 |
| [77] |
Remington BC, Blom WM, Bassa B, Koppelman SJ. 2020. Risk of shared equipment in restaurants for consumers with peanut allergy: a simulation for preparing Asian foods: a simulation for preparing Asian foods. Annals of Allergy, Asthma & Immunology 125:543−551.e6 doi: 10.1016/j.anai.2020.07.030 |
| [78] |
Sicherer SH, Sampson HA. 2007. Peanut allergy: Emerging concepts and approaches for an apparent epidemic. Journal of Allergy and Clinical Immunology 120:491−503 doi: 10.1016/j.jaci.2007.07.015 |
| [79] |
DeSoucey M, Waggoner MR. 2022. Another person’s peril: peanut allergy, risk perceptions, and responsible sociality. American Sociological Review 87:50−79 doi: 10.1177/00031224211067773 |
| [80] |
Cordeiro-Massironi K, Freitas RAMS, da Silva Martins ICV, de Camargo AC, da Silva Torres EAF. 2024. Bioactive compounds of peanut skin in prevention and adjunctive treatment of chronic non-communicable diseases. Food & Function 15:6304−23 doi: 10.1039/d4fo00647j |
| [81] |
Walker MJ, Gowland MH. 2017. Food allergy: managing food allergens. In Analysis of Food Toxins and Toxicants, eds. Wong YC, Lewis RJ. United Kingdom: John Wiley & Sons. pp.711−42. doi: 10.1002/9781118992685.ch24 |
| [82] |
Attig L, Gabory A, Junien C. 2010. Nutritional developmental epigenomics: immediate and long-lasting effects. The Proceedings of the Nutrition Society 69:221−31 doi: 10.1017/S002966511000008X |
| [83] |
Dwivedi S, Puppala N, Maleki S, Ozias-Akins P, Ortiz R. 2016. Peanut improvement for human health. In Plant Breeding Reviews, eds. Janick J. vol. 38. Hoboken, New Jersey: Wiley-Blackwell. pp. 143−86. doi: 10.1002/9781118916865.ch04 |
| [84] |
Lee NA, Wright GC, Rachaputi RC. 2016. Peanuts: Bioactives and allergens. USA: DEStech Publications, Inc. www.destechpub.com/wp-content/uploads/2016/03/Peanuts-Bioactive-Allergens-preview.pdf?x74822 |