[1]

Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, et al. 2015. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta 241:549−62

doi: 10.1007/s00425-014-2239-3
[2]

Strader L, Weijers D, Wagner D. 2022. Plant transcription factors — being in the right place with the right company. Current Opinion in Plant Biology 65:102136

doi: 10.1016/j.pbi.2021.102136
[3]

Zou X, Sun H. 2023. DOF transcription factors: specific regulators of plant biological processes. Frontiers in Plant Science 14:1044918

doi: 10.3389/fpls.2023.1044918
[4]

Yanagisawa S, Izui K. 1993. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. The Journal of Biological Chemistry 268:16028−36

doi: 10.1016/S0021-9258(18)82353-5
[5]

Hong K, Xian J, Jia Z, Hou X, Zhang L. 2019. Genome-wide identification of Dof transcription factors possibly associated with internal browning of postharvest pineapple fruits. Scientia Horticulturae 251:80−87

doi: 10.1016/j.scienta.2019.03.007
[6]

Zhang Z, Yuan L, Liu X, Chen X, Wang X. 2018. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 639:137−48

doi: 10.1016/j.gene.2017.09.039
[7]

Yanagisawa S. 2002. The Dof family of plant transcription factors. Trends in Plant Science 7:555−60

doi: 10.1016/S1360-1385(02)02362-2
[8]

Fu C, Xiao Y, Jiang N, Yang Y. 2024. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 25:702

doi: 10.1186/s12864-024-10622-6
[9]

Umemura Y, Ishiduka T, Yamamoto R, Esaka M. 2004. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. The Plant Journal 37:741−49

doi: 10.1111/j.1365-313X.2003.01997.x
[10]

Kim HS, Kim SJ, Abbasi N, Bressan RA, Yun DJ, et al. 2010. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. The Plant Journal 64:524−35

doi: 10.1111/j.1365-313X.2010.04346.x
[11]

Lijavetzky D, Carbonero P, Vicente-Carbajosa J. 2003. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evolutionary Biology 3:17

doi: 10.1186/1471-2148-3-17
[12]

Jiang Y, Zeng B, Zhao H, Zhang M, Xie S, et al. 2012. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. Journal of Integrative Plant Biology 54:616−30

doi: 10.1111/j.1744-7909.2012.01149.x
[13]

Yang X, Tuskan GA, Cheng MZM. 2006. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiology 142:820−30

doi: 10.1104/pp.106.083642
[14]

Sun S, Wang B, Jiang Q, Li Z, Jia S, et al. 2021. Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch (Betula platyphylla). PeerJ 9:e11938

doi: 10.7717/peerj.11938
[15]

Nan H, Ludlow RA, Lu M, An H. 2021. Genome-wide analysis of Dof genes and their response to abiotic stress in rose (Rosa chinensis). Frontiers in Genetics 12:538733

doi: 10.3389/fgene.2021.538733
[16]

Noguero M, Atif RM, Ochatt S, Thompson RD. 2013. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science 209:32−45

doi: 10.1016/j.plantsci.2013.03.016
[17]

Huang Y, Han Z, Cheng N, Luo M, Bai X, et al. 2019. Minor effects of 11 Dof family genes contribute to the missing heritability of heading date in rice (Oryza sativa L.). Frontiers in Plant Science 10:1739

doi: 10.3389/fpls.2019.01739
[18]

Renau-Morata B, Carrillo L, Cebolla-Cornejo J, Molina RV, Martí R, et al. 2020. The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Scientific Reports 10:10645

doi: 10.1038/s41598-020-67537-x
[19]

Baumann K, De Paolis A, Costantino P, Gualberti G. 1999. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. The Plant Cell 11:323−34

doi: 10.1105/tpc.11.3.323
[20]

Sasaki N, Matsumaru M, Odaira S, Nakata A, Nakata K, et al. 2015. Transient expression of tobacco BBF1-related Dof proteins, BBF2 and BBF3, upregulates genes involved in virus resistance and pathogen defense. Physiological and Molecular Plant Pathology 89:70−77

doi: 10.1016/j.pmpp.2014.12.005
[21]

Kang WH, Kim S, Lee HA, Choi D, Yeom SI. 2016. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Scientific Reports 6:33332

doi: 10.1038/srep33332
[22]

Wen C, Cheng Q, Zhao L, Mao A, Yang J, et al. 2016. Identification and characterisation of Dof transcription factors in the cucumber genome. Scientific Reports 6:23072

doi: 10.1038/srep23072
[23]

Corrales AR, Nebauer SG, Carrillo L, Fernández-Nohales P, Marqués J, et al. 2014. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany 65:995−1012

doi: 10.1093/jxb/ert451
[24]

Washio K. 2003. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiology 133:850−63

doi: 10.1104/pp.103.027334
[25]

Li T, Wang X, Elango D, Zhang W, Li M, et al. 2022. Genome-wide identification, phylogenetic and expression pattern analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.). PeerJ 10:e14087

doi: 10.7717/peerj.14087
[26]

Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311−16

doi: 10.1038/nature25447
[27]

Pedrosa AM, de Paula Santos Martins C, Gonçalves LP, Costa MGC. 2015. Late Embryogenesis Abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10:e0145785

doi: 10.1371/journal.pone.0145785
[28]

Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, et al. 2007. Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31

doi: 10.1186/1471-2164-8-31
[29]

Khan MA, Liu DH, Alam SM, Zaman F, Luo Y, et al. 2023. Molecular physiology for the increase of soluble sugar accumulation in citrus fruits under drought stress. Plant Physiology and Biochemistry 203:108056

doi: 10.1016/j.plaphy.2023.108056
[30]

Liu Y, Liu N, Deng X, Liu D, Li M, et al. 2020. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 21:276

doi: 10.1186/s12864-020-6691-0
[31]

Wang Z, Wong DCJ, Chen Z, Bai W, Si H, et al. 2022. Emerging roles of plant DNA-binding with one finger transcription factors in various hormone and stress signaling pathways. Frontiers in Plant Science 13:844201

doi: 10.3389/fpls.2022.844201
[32]

Chen P, Yan M, Li L, He J, Zhou S, et al. 2020. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. Horticulture Research 7:195

doi: 10.1038/s41438-020-00419-5
[33]

Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[34]

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44:D279−D285

doi: 10.1093/nar/gkv1344
[35]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−D208

doi: 10.1093/nar/gkp335
[36]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols, ed. Link AJ. Clifton, NJ: Humana Press. Vol 112. pp. 531−52. doi: 10.1385/1-59259-584-7:531

[37]

Zeng RF, Gan ZM, Hu SF, Fu LM, Gong Z, et al. 2024. Genome-wide identification of the CclKNOX gene family and functional characterization of CclKNOX3 and CclKNOX5 in citrus shoot development. Scientia Horticulturae 326:112708

doi: 10.1016/j.scienta.2023.112708
[38]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[39]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: upgraded gene feature visualization server. Bioinformatics 31:1296–97

doi: 10.1093/bioinformatics/btu817
[40]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735–43

doi: 10.1046/j.1365-313x.1998.00343.x
[41]

Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, et al. 2022. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. The Plant Journal 110:828–48

doi: 10.1111/tpj.15707
[42]

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. 2009. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry 55:611−22

doi: 10.1373/clinchem.2008.112797
[43]

Li Y, Xu M, Lu D, Wang D, Liu S, et al. 2024. SWI3 subunits of SWI/SNF complexes in Sweet Orange (Citrus sinensis): genome-wide identification and expression analysis of CsSWI3 family genes. Fruit Research 4:e002

doi: 10.48130/frures-0023-0038
[44]

Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, et al. 2024. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi (Litchi chinensis Sonn.). Horticulture Research 11:uhae150

doi: 10.1093/hr/uhae150
[45]

Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, et al. 2021. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. Journal of Experimental Botany 72:7002−19

doi: 10.1093/jxb/erab311
[46]

Xu YY, Zeng RF, Zhou H, Qiu MQ, Gan ZM, et al. 2022. Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance. The Plant Journal 111:164–82

doi: 10.1111/tpj.15785
[47]

Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, et al. 2013. New and continuing developments at PROSITE. Nucleic Acids Research 41:D344−D347

doi: 10.1093/nar/gks1067
[48]

Krusell L, Rasmussen I, Gausing K. 1997. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare). FEBS Letters 408:25−29

doi: 10.1016/S0014-5793(97)00382-7
[49]

Smith HMS, Boschke I, Hake S. 2002. Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proceedings of the National Academy of Sciences of the United States of America 99:9579−84

doi: 10.1073/pnas.092271599
[50]

Skolnick J, Fetrow JS, Kolinski A. 2000. Structural genomics and its importance for gene function analysis. Nature Biotechnology 18:283−87

doi: 10.1038/73723
[51]

Tautz D, Domazet-Lošo T. 2011. The evolutionary origin of orphan genes. Nature Reviews Genetics 12:692−702

doi: 10.1038/nrg3053
[52]

Jin X, Wang Z, Ai Q, Li X, Yang J, et al. 2024. DNA-binding with one finger (Dof) transcription factor gene family study reveals differential stress-responsive transcription factors in contrasting drought tolerance potato species. International Journal of Molecular Sciences 25:3488

doi: 10.3390/ijms25063488
[53]

Yu Q, Li C, Zhang J, Tian Y, Wang H, et al. 2020. Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis). PeerJ 8:e9269

doi: 10.7717/peerj.9269
[54]

Lee HG, Choi YR, Seo PJ. 2016. Increased STM expression is associated with drought tolerance in Arabidopsis. Journal of Plant Physiology 201:79−84

doi: 10.1016/j.jplph.2016.07.002
[55]

Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571−75

doi: 10.1038/nature14099
[56]

Prince SJ, Murphy M, Mutava RN, Durnell LA, Valliyodan B, et al. 2017. Root xylem plasticity to improve water use and yield in water-stressed soybean. Journal of Experimental Botany 68:2027−36

doi: 10.1093/jxb/erw472
[57]

Qin H, Wang J, Chen X, Wang F, Peng P, et al. 2019. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New phytologist 223:798−813

doi: 10.1111/nph.15824
[58]

Ruta V, Longo C, Lepri A, De Angelis V, Occhigrossi S, et al. 2020. The DOF transcription factors in seed and seedling development. Plants 9:218

doi: 10.3390/plants9020218
[59]

Ravindran P, Verma V, Stamm P, Kumar PP. 2017. A novel RGL2-DOF6 complex contributes to primary seed dormancy in Arabidopsis thaliana by regulating a GATA transcription factor. Molecular Plant 10:1307−20

doi: 10.1016/j.molp.2017.09.004