| [1] |
Yang S, Cui X. 2023. Large-scale production: A possible way to the balance between feed grain security and meat security in China. Journal of Agriculture and Food Research 14:100745 doi: 10.1016/j.jafr.2023.100745 |
| [2] |
Yafetto L, Odamtten GT, Wiafe-Kwagyan M. 2023. Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon 9:e14814 doi: 10.1016/j.heliyon.2023.e14814 |
| [3] |
Zhan X, Hou L, He Z, Cao S, Wen X, et al. 2024. Effect of miscellaneous meals replacing soybean meal in feed on growth performance, serum biochemical parameters, and microbiota composition of 25–50 kg growing pigs. Animals 13:1354 doi: 10.3390/ani14091354 |
| [4] |
Parrini S, Aquilani C, Pugliese C, Bozzi R, Sirtori F. 2023. Soybean replacement by alternative protein sources in pig nutrition and its effect on meat quality. Animals 13:494 doi: 10.3390/ani13030494 |
| [5] |
Alshelmani MI, Kaka U, Abdalla EA, Humam AM, Zamani HU. 2021. Effect of feeding fermented and non-fermented palm kernel cake on the performance of broiler chickens: a review. World's Poultry Science Journal 77:377−88 doi: 10.1080/00439339.2021.1910472 |
| [6] |
Azizi MN, Loh TC, Foo HL, Teik Chung EL. 2021. Is Palm Kernel Cake a Suitable Alternative Feed Ingredient for Poultry? Animals 11:338 doi: 10.3390/ani11020338 |
| [7] |
Fanelli NS, Torres-Mendoza LJ, Abelilla JJ, Stein HH. 2023. Chemical composition of copra, palm kernel, and cashew co-products from South-East Asia and almond hulls from Australia. Animal Bioscience 36:768−75 doi: 10.5713/ab.22.0359 |
| [8] |
Liu Y, Liu Y, Cao Y, Wang C. 2025. Pretreatment of palm kernel cake by enzyme-bacteria and its effects on growth performance in broilers. In Animals 15:116 doi: 10.3390/ani15020116 |
| [9] |
Huang H, Lin X, Meng X, Liu Y, Fan J, et al. 2024. Effects of replacing wheat bran with palm kernel cake or fermented palm kernel cake on the growth performance, intestinal microbiota and intestinal health of tilapia (GIFT, Oreochromis niloticus). Frontiers in Nutrition 11:1368251 doi: 10.3389/fnut.2024.1368251 |
| [10] |
Jørgensen H, Sanadi AR, Felby C, Lange NE, Fischer M, Ernst S. 2010. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Appl Biochem Biotechnol 161:318−32 doi: 10.1007/s12010-009-8814-6 |
| [11] |
Wang J, Yao L, Su J, Fan R, Zheng J, et al. 2023. Effects of Lactobacillus plantarum and its fermentation products on growth performance, immune function, intestinal pH, and cecal microorganisms of Lingnan yellow chicken. Poultry Science 102:102610 doi: 10.1016/j.psj.2023.102610 |
| [12] |
Alshelmani MI, Loh TC, Foo HL, Sazili AQ, Lau WH. 2017. Effect of feeding different levels of palm kernel cake fermented by Paenibacillus polymyxa ATCC 842 on broiler growth performance, blood biochemistry, carcass characteristics, and meat quality. Animal Production Science 57:839−48 doi: 10.1071/an15359 |
| [13] |
Gomez-Osorio LM, Nielsen JU, Martens HJ, Wimmer R. 2022. Upgrading the nutritional value of PKC using a Bacillus subtilis derived monocomponent β-mannanase. Molecules 27:563 doi: 10.3390/molecules27020563 |
| [14] |
Jiang Z, Yang M, Su W, Mei L, Li Y, et al. 2024. Probiotics in piglet: from gut health to pathogen defense mechanisms. Frontiers in Immunology 15:1468873 doi: 10.3389/fimmu.2024.1468873 |
| [15] |
Daniel S, Zeid S, Liao J, Hang S. 2025. Exploring the effect of feeding broiler chickens a diet incorporating unfermented or fermented palm kernel cake: growth performance, digestibility, biochemical indices, digestive enzyme activity, and mRNA gene expression of nutrient transporters. Italian Journal of Animal Science 24:324−35 doi: 10.1080/1828051X.2025.2453540 |
| [16] |
National Research C. 2012. Nutrient Requirements of Swine. Eleventh Revised Edition. Washington, DC: The National Academies Press. doi: 10.17226/13298 |
| [17] |
Yang Z, Bao L, Song W, Zhao X, Liang H, et al. 2024. Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle. Animal Bioscience 37:240−52 doi: 10.5713/ab.23.0149 |
| [18] |
Xin G, Yang J, Li R, Gao Q, Li R, et al. 2022. Dietary supplementation of hemp oil in teddy dogs: Effect on apparent nutrient digestibility, blood biochemistry and metabolomics. Bioengineered 13:6173−87 doi: 10.1080/21655979.2022.2043018 |
| [19] |
Wang L, Li D. 2024. - Invited Review - Current status, challenges and prospects for pig production in Asia. Animal Bioscience 37:742−54 doi: 10.5713/ab.23.0303 |
| [20] |
Agyekum AK, Nyachoti CM. 2017. Nutritional and metabolic consequences of feeding high-fiber diets to swine: a review. Engineering 3:716−25 doi: 10.1016/J.ENG.2017.03.010 |
| [21] |
Wang J, Liu S, Ma J, Dong X, Long S, et al. 2024. Growth performance, serum parameters, inflammatory responses, intestinal morphology and microbiota of weaned piglets fed 18% crude protein diets with different ratios of standardized ileal digestible isoleucine to lysine. Animal Nutrition 16:313−25 doi: 10.1016/j.aninu.2023.11.008 |
| [22] |
Lou AG, Cai JS, Zhang XM, Cui CD, Piao YS, et al. 2017. The aflatoxin-detoxifizyme specific expression in the parotid gland of transgenic pigs. Transgenic Research 26:677−87 doi: 10.1007/s11248-017-0036-z |
| [23] |
Duan G, Huang P, Zheng C, Zheng J, Yu J, et al. 2023. Development and recovery of liver injury in piglets by incremental injection of LPS. Antioxidants 12:1143 doi: 10.3390/antiox12061143 |
| [24] |
Poklukar K, Čandek-Potokar M, Batorek Lukač N, Tomažin U, Škrlep M. 2020. Lipid deposition and metabolism in local and modern pig breeds: a review. Animals 10:424 doi: 10.3390/ani10030424 |
| [25] |
Kim JS, Ingale SL, Hosseindoust AR, Lee SH, Lee JH, et al. 2017. Effects of mannan level and β-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites of growing pigs. Animal 11:202−8 doi: 10.1017/S1751731116001385 |
| [26] |
Li Y, Lu X, Wu H, Xia M, Hou Q, et al. 2019. The effect of dietary supplementation of low crude protein on intestinal morphology in pigs. Research in Veterinary Science 122:15−21 doi: 10.1016/j.rvsc.2018.11.013 |
| [27] |
Sun H, Jiang Z, Chen Z, Liu G, Liu Z. 2024. Effects of fermented unconventional protein feed on pig production in China. Frontiers in Veterinary Science 11:1446233 doi: 10.3389/fvets.2024.1446233 |
| [28] |
Kiarie EG, Mills A. 2019. Role of Feed Processing on Gut Health and Function in Pigs and Poultry: Conundrum of Optimal Particle Size and Hydrothermal Regimens. Frontiers in Veterinary Science 6:19 doi: 10.3389/fvets.2019.00019 |
| [29] |
Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. 2017. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunology 10:307−17 doi: 10.1038/mi.2016.128 |
| [30] |
Zheng H, Cao H, Zhang D, Huang J, Li J, et al. 2022. Cordyceps militaris modulates intestinal barrier function and gut microbiota in a pig model. Frontiers in Microbiologyl 13:810230 doi: 10.3389/fmicb.2022.810230 |
| [31] |
Szabó C, Kachungwa Lugata J, Ortega ADSV. 2023. Gut health and influencing factors in pigs. Animals 13:1350 doi: 10.3390/ani13081350 |
| [32] |
Liu S, Fan Z. 2023. Effects of dietary protein restriction on colonic microbiota of finishing pigs. Animals 13:9 doi: 10.3390/ani13010009 |
| [33] |
Feng L, Luo Z, Wang J, Wu K, Wang W, et al. 2024. Effects of different ratios of soluble to insoluble dietary fiber on growth performance and intestinal health of piglets. Animal Nutrition 18:257−71 doi: 10.1016/j.aninu.2024.05.005 |
| [34] |
Chen T, Chen D, Tian G, Zheng P, Mao X, et al. 2020. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Animal Feed Science and Technology 260:114335 doi: 10.1016/j.anifeedsci.2019.114335 |
| [35] |
Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology 33:496−503 doi: 10.1016/j.tibtech.2015.06.011 |
| [36] |
Jin M, Fan Q, Shang F, Zhang T, Ogino S, et al. 2024. Fusobacteria alterations are associated with colorectal cancer liver metastasis and a poor prognosis. Oncology Letters 27:235 doi: 10.3892/ol.2024.14368 |
| [37] |
Chen T, Long W, Zhang C, Liu S, Zhao L, et al. 2017. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports 7:2594 doi: 10.1038/s41598-017-02995-4 |
| [38] |
Hou D, Zhao Q, Chen B, Ren X, Yousaf L, et al. 2021. Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Journal of Food Science 86:4183−96 doi: 10.1111/1750-3841.15866 |
| [39] |
Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, et al. 2019. Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience 41:907−21 doi: 10.1007/s11357-019-00098-8 |
| [40] |
Sun T, Miao H, Zhang C, Wang Y, Liu S, et al. 2022. Effect of dietary Bacillus coagulans on the performance and intestinal microbiota of weaned piglets. Animal 16:100561 doi: 10.1016/j.animal.2022.100561 |
| [41] |
Louis P, Scott KP, Duncan SH, Flint HJ. 2007. Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology 102:1197−208 doi: 10.1111/j.1365-2672.2007.03322.x |
| [42] |
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, et al. 2019. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. The ISME Journal 13:1437−56 doi: 10.1038/s41396-019-0363-6 |
| [43] |
Tingirikari JMR. 2018. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food & Function 9:5059−73 doi: 10.1039/c8fo01296 |
| [44] |
Zrelli M, Ferjani A, Nouira M, Hammami S, Ghithia N, et al. 2024. Diversity in gut microbiota among colorectal cancer patients: findings from a case-control study conducted at a Tunisian University Hospital. Discover Oncology 15:402 doi: 10.1007/s12672-024-01232-5 |
| [45] |
Wang X, Wang W, Wang L, Yu C, Zhang G, et al. 2019. Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food & Function 10:479−89 doi: 10.1039/C8FO02438C |
| [46] |
Mazhar M, Zhu Y, Qin L. 2023. The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids. Foods 12:1023 doi: 10.3390/foods12051023 |