[1]

Conrad LA, Cabana MD, Rastogi D. 2021. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatric Research 90(1):45−51

doi: 10.1038/s41390-020-01231-6
[2]

Venkatesan P. 2023. GINA report for asthma. The Lancet Respiratory Medicine 11(7):589

doi: 10.1016/S2213-2600(23)00230-8
[3]

Zhang T, Huang H, Liang L, Lu H, Liang D. 2024. Long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) knockdown alleviates airway remodeling in asthma via regulating miR-410-3p/RCC2 and inhibiting Wnt/β-catenin pathway. Heliyon 10(1):e23860

doi: 10.1016/j.heliyon.2023.e23860
[4]

Chogtu B, Bhattacharjee D, Magazine R. 2016. Epigenetics: the new frontier in the landscape of asthma. Scientifica (Cairo) 2016:4638949

doi: 10.1155/2016/4638949
[5]

Cheng Q, Shang Y, Huang W, Zhang Q, Li X, et al. 2019. p300 mediates the histone acetylation of ORMDL3 to affect airway inflammation and remodeling in asthma. International Immunopharmacology 76:105885

doi: 10.1016/j.intimp.2019.105885
[6]

Zhang Y. 2023. From gene identifications to therapeutic targets for asthma: focus on great potentials of TSLP, ORMDL3, and GSDMB. Chinese Medical Journal Pulmonary and Critical Care Medicine 1(3):139−47

doi: 10.1016/j.pccm.2023.08.001
[7]

Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. 2024. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. Medicina (Lithuania) 60(1):110

doi: 10.3390/medicina60010110
[8]

Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, et al. 2024. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics and Chromatin 17:31

doi: 10.1186/s13072-024-00554-6
[9]

Ranjbar M, Whetstone CE, Omer H, Power L, Cusack RP, et al. 2022. The genetic factors of the airway epithelium associated with the pathology of asthma. Genes 13(10):1870

doi: 10.3390/genes13101870
[10]

Hizawa N. 2023. The understanding of asthma pathogenesis in the era of precision medicine. Allergology International 72(1):3−10

doi: 10.1016/j.alit.2022.09.001
[11]

Wrennall JA, Ahmad S, Worthington EN, Wu T, Goriounova AS, et al. 2022. A SPLUNC1 peptidomimetic inhibits orai1 and reduces inflammation in a murine allergic asthma model. American Journal of Respiratory Cell and Molecular Biology 66(3):271−82

doi: 10.1165/rcmb.2020-0452OC
[12]

Steinke JW, Borish L. 2001. Th2 cytokines and asthma Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respiratory Research 2:66−70

doi: 10.1186/rr40
[13]

Elsaid A, Shoaib RMS, Badr SS, Wahba Y, Ayyad SEN. 2021. Polymorphisms of interleukin 4 and interleukin 4 receptor genes and bronchial asthma risk among Egyptian children. Clinical Biochemistry 93:66−72

doi: 10.1016/j.clinbiochem.2021.04.006
[14]

Li HF, Yan LP, Wang K, Li XT, Liu HX, et al. 2019. Association between ADAM33 polymorphisms and asthma risk: a systematic review and meta-analysis. Respiratory Research 20:38

doi: 10.1186/s12931-019-1006-1
[15]

Romieu I, Ramirez-Aguilar M, Sienra-Monge JJ, Moreno-Macías H, del Rio-Navarro BE, et al. 2006. GSTM1 and GSTP1 and respiratory health in asthmatic children exposed to ozone. European Respiratory Journal 28(5):953−59

doi: 10.1183/09031936.06.00114905
[16]

Castro M, Ferreira J, Sarmento D, Carvalho C, Matos A, et al. 2018. The role of GSTT1 and GSTM1 gene polymorphisms in bronchial asthma. European Respiratory Journal 52:PA4223

doi: 10.1183/13993003.congress-2018.PA4223
[17]

Su X, Ren Y, Li M, Kong L, Kang J. 2020. Association of glutathione S -transferase M1 and T1 genotypes with asthma: a meta-analysis. Medicine (United States) 99(34):E21732

doi: 10.1097/MD.0000000000021732
[18]

Osawa R, Akiyama M, Shimizu H. 2011. Filaggrin gene defects and the risk of developing allergic disorders. Allergology International 60:1−9

doi: 10.2332/allergolint.10-RAI-0270
[19]

Cubero JL, Isidoro-García M, Segura N, Benito Pescador D, Sanz C, et al. 2016. Filaggrin gene mutations and new SNPs in asthmatic patients: a cross-sectional study in a Spanish population. Allergy, Asthma and Clinical Immunology 12(1):31

doi: 10.1186/s13223-016-0137-x
[20]

Kandil R, Baldassi D, Böhlen S, Müller JT, Jürgens DC, et al. 2023. Targeted GATA3 knockdown in activated T cells via pulmonary siRNA delivery as novel therapy for allergic asthma. Journal of Controlled Release 354:305−15

doi: 10.1016/j.jconrel.2023.01.014
[21]

Gavitt TD, Hartmann AK, Sawant SS, Mara AB, Szczepanek SM, et al. 2021. A GATA3 targeting nucleic acid nanocapsule for in vivo gene regulation in asthma. ACS Nano 15(7):11192−201

doi: 10.1021/acsnano.0c07781
[22]

Kristjansdottir K, Norddahl GL, Ivarsdottir EV, Jonsdottir I, Olafsdottir TA, et al. 2024. A partial loss-of-function variant in STAT6 protects against T2 asthma. The Journal of Allergy and Clinical Immunology 155:228−35

doi: 10.1016/j.jaci.2024.10.002
[23]

Niessen NM, Gibson PG, Simpson JL, Scott HA, Baines KJ, et al. 2021. Airway monocyte modulation relates to tumour necrosis factor dysregulation in neutrophilic asthma. ERJ Open Research 7(3):00131-2021

doi: 10.1183/23120541.00131-2021
[24]

Martinez FD. 2007. CD14, endotoxin, and asthma risk: actions and interactions. Proceedings of the American Thoracic Society 4(3):221−25

doi: 10.1513/pats.200702-035AW
[25]

Şahin F, Yildiz P, Kuskucu A, Kuskucu MA, Karaca N, et al. 2014. The effect of CD14 and TLR4 gene polimorphisms on asthma phenotypes in adult Turkish asthma patients: a genetic study. BMC Pulmonary Medicine 14:20

doi: 10.1186/1471-2466-14-20
[26]

Forsström V, Toivonen L, Homil K, Waris M, Pedersen CT, et al. 2023. Association of asthma risk alleles with acute respiratory tract infections and wheezing illnesses in young children. Journal of Infectious Diseases 228(8):990−98

doi: 10.1093/infdis/jiad075
[27]

Cai X, Qiao Y, Diao C, Xu X, Chen Y, et al. 2014. Association between polymorphisms of the IKZF3 gene and systemic lupus erythematosus in a Chinese Han Population. PLoS One 9(10):0108661

doi: 10.1371/journal.pone.0108661
[28]

Khorasani AM, Mohammadi B, Saghafi MR, Mohammadi S, Ghaffari S, et al. 2023. The association between MUC5AC and MUC5B genes expression and remodeling progression in severe neutrophilic asthma: a direct relationship. Respiratory Medicine 213:107260

doi: 10.1016/J.RMED.2023.107260
[29]

Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, et al. 2023. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. Journal of Asthma 60(3):458−67

doi: 10.1080/02770903.2022.2056896
[30]

Qi C, Jiang Y, Yang IV, Forno E, Wang T, et al. 2020. Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology 145(6):1655−63

doi: 10.1016/j.jaci.2019.12.911
[31]

Kumar S, Chinnusamy V, Mohapatra T. 2018. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Frontiers in Genetics 9:640

doi: 10.3389/fgene.2018.00640
[32]

Jang HS, Shin WJ, Lee JE, Do JT. 2017. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 8(6):2−20

doi: 10.3390/genes8060148
[33]

Wang J, Hu J, Qin D, Han D, Hu J. 2024. A multi-omics Mendelian randomization identifies putatively causal genes and DNA methylation sites for asthma. World Allergy Organization Journal 17(12):101008

doi: 10.1016/j.waojou.2024.101008
[34]

Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, et al. 2015. DNA methylation and childhood asthma in the inner city. Journal of Allergy and Clinical Immunology 136(1):69−80

doi: 10.1016/j.jaci.2015.01.025
[35]

Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, et al. 2023. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. Journal of Ayurveda and Integrative Medicine 14(2):100692

doi: 10.1016/j.jaim.2023.100692
[36]

Liang W, Chen Z, Li C, Liu J, Tao J, et al. 2021. Accurate diagnosis of pulmonary nodules using a noninvasive DNA methylation test. Journal of Clinical Investigation 131(10):e145973

doi: 10.1172/JCI145973
[37]

Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, et al. 2020. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes 11(5):556

doi: 10.3390/genes11050556
[38]

Farsetti A, Illi B, Gaetano C. 2023. How epigenetics impacts on human diseases. European Journal of Internal Medicine 114:15−22

doi: 10.1016/j.ejim.2023.05.036
[39]

Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, et al. 2018. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma and Clinical Immunology 14:39

doi: 10.1186/s13223-018-0259-4
[40]

Pelaia C, Heffler E, Crimi C, Maglio A, Vatrella A, et al. 2022. Interleukins 4 and 13 in asthma: key pathophysiologic cytokines and druggable molecular targets. Frontiers in Pharmacology 13:851940

doi: 10.3389/fphar.2022.851940
[41]

Berthon BS, McLoughlin RF, Jensen ME, Hosseini B, Williams EJ, et al. 2021. The effects of increasing fruit and vegetable intake in children with asthma: a randomized controlled trial. Clinical and Experimental Allergy 51(9):1144−56

doi: 10.1111/cea.13979
[42]

Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, et al. 2014. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nature Immunology 15(8):777−88

doi: 10.1038/ni.2937
[43]

Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, et al. 2020. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Targeted Oncology 15(3):261−78

doi: 10.1007/s11523-020-00717-x
[44]

Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. 2020. MicroRNAs in asthma and respiratory infections: Identifying common pathways. Allergy, Asthma & Immunology Research 12(1):4−23

doi: 10.4168/aair.2020.12.1.4
[45]

Sharma R, Tiwari A, McGeachie MJ. 2022. Recent miRNA Research in Asthma. Current Allergy and Asthma Reports 22(12):231−58

doi: 10.1007/s11882-022-01050-1
[46]

Zheng R, Gao F, Xiao Y, Liang J, Mao Z, et al. 2024. PM2.5-derived exosomal long noncoding RNA PAET participates in childhood asthma by enhancing DNA damage via m6A-dependent OXPHOS regulation. Environment International 183:108386

doi: 10.1016/j.envint.2023.108386
[47]

Wang AL, Gruzieva O, Qiu W, Merid SK, Celedón JC, et al. 2019. DNA methylation is associated with inhaled corticosteroid response in persistent childhood asthmatics. Clinical & Experimental Allergy 49(9):1225−34

doi: 10.1111/cea.13447
[48]

Islam R, Dash D, Singh R. 2023. An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice. Scientific Reports 13:9637

doi: 10.1038/s41598-023-36678-0
[49]

Li ML, Su XM, Ren Y, Zhao X, Kong LF, et al. 2020. HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respiratory Research 21:62

doi: 10.1186/s12931-020-1322-5
[50]

Zhang Z, Wang G, Li Y, Lei D, Xiang J, et al. 2022. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Frontiers in Pharmacology 13:1072651

doi: 10.3389/fphar.2022.1072651
[51]

Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, et al. 2018. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. The Lancet Respiratory Medicine 6(5):379−88

doi: 10.1016/S2213-2600(18)30052-3
[52]

Sun J, Wang J, Zheng D, Hu X. 2020. Advances in therapeutic application of CRISPR-Cas9. Briefings in Functional Genomics 19(3):164−74

doi: 10.1093/bfgp/elz031