| [1] |
Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, et al. 2014. Utilization and transfer of forest genetic resources: a global review. Forest Ecology and Management 333:22−34 doi: 10.1016/j.foreco.2014.07.017 |
| [2] |
Suyal S, Sharma CM, Gairola S, Ghildiyal SK, Rana CS, et al. 2010. Phytodiversity (Angiosperms and Gymnosperms) in Chaurangikhal Forest of Garhwal Himalaya, Uttarakhand, India. Indian Journal of Science and Technology 3:267−75 doi: 10.17485/ijst/2010/v3i3.2 |
| [3] |
Mori AS, Lertzman KP, Gustafsson L. 2017. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology 54:12−27 doi: 10.1111/1365-2664.12669 |
| [4] |
Führer E. 2000. Forest functions, ecosystem stability and management. Forest Ecology and Management 132:29−38 doi: 10.1016/S0378-1127(00)00377-7 |
| [5] |
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, et al. 2020. Functional and morphological evolution in gymnosperms: a portrait of implicated gene families. Evolutionary Applications 13:210−27 doi: 10.1111/eva.12839 |
| [6] |
Smeets EMW, Faaij APC. 2007. Bioenergy potentials from forestry in 2050. Climatic Change 81:353−90 doi: 10.1007/s10584-006-9163-x |
| [7] |
Nguyen TTT, Bae EK, Tran TNA, Lee H, Ko JH. 2023. Exploring the seasonal dynamics and molecular mechanism of wood formation in gymnosperm trees. International Journal of Molecular Sciences 24:8624 doi: 10.3390/ijms24108624 |
| [8] |
Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194:629−46 doi: 10.1111/j.1469-8137.2012.04105.x |
| [9] |
Crepet WL, Niklas KJ. 2009. Darwin's second 'abominable mystery': Why are there so many angiosperm species? American Journal of Botany 96:366−81 doi: 10.3732/ajb.0800126 |
| [10] |
Soltis PS, Soltis DE. 2004. The origin and diversification of angiosperms. American Journal of Botany 91:1614−26 doi: 10.3732/ajb.91.10.1614 |
| [11] |
Shi L, Feng W, Xu J, Kuzyakov Y. 2018. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation & Development 29:3886−97 doi: 10.1002/ldr.3136 |
| [12] |
Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ. 2017. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends in Plant Science 22:338−50 doi: 10.1016/j.tplants.2016.12.009 |
| [13] |
Padilla-González GF, Frey M, Gómez-Zeledón J, da Costa FB, Spring O. 2019. Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Scientific Reports 9:13178 doi: 10.1038/s41598-019-49246-2 |
| [14] |
Thakur M, Bhattacharya S, Khosla PK, Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12:1−12 doi: 10.1016/j.jarmap.2018.11.004 |
| [15] |
Ramachandra Rao S, Ravishankar GA. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances 20:101−53 doi: 10.1016/S0734-9750(02)00007-1 |
| [16] |
Chen F, Dong W, Zhang J, Guo X, Chen J, et al. 2018. The sequenced angiosperm genomes and genome databases. Frontiers in Plant Science 9:418 doi: 10.3389/fpls.2018.00418 |
| [17] |
Brecka AFJ, Shahi C, Chen HYH. 2018. Climate change impacts on boreal forest timber supply. Forest Policy and Economics 92:11−21 doi: 10.1016/j.forpol.2018.03.010 |
| [18] |
Bawa KS, Dayanandan S. 1998. Global climate change and tropical forest genetic resources. Climatic Change 39:473−85 doi: 10.1023/A:1005360223639 |
| [19] |
Linnakoski R, Kasanen R, Dounavi A, Forbes KM. 2019. Editorial: forest health under climate change: effects on tree resilience, and pest and pathogen dynamics. Frontiers in Plant Science 10:1157 doi: 10.3389/fpls.2019.01157 |
| [20] |
Lewis SL, Edwards DP, Galbraith D. 2015. Increasing human dominance of tropical forests. Science 349:827−32 doi: 10.1126/science.aaa9932 |
| [21] |
Franklin J, Serra-Diaz JM, Syphard AD, Regan HM. 2017. Big data for forecasting the impacts of global change on plant communities. Global Ecology and Biogeography 26:6−17 doi: 10.1111/geb.12501 |
| [22] |
Priyanka V, Kumar R, Dhaliwal I, Kaushik P. 2021. Germplasm conservation: instrumental in agricultural biodiversity—a review. Sustainability 13:6743 doi: 10.3390/su13126743 |
| [23] |
Labrinidis A, Jagadish HV. 2012. Challenges and opportunities with big data. Proceedings of the VLDB Endowment 5:2032−33 doi: 10.14778/2367502.236757 |
| [24] |
Nitoslawski SA, Wong-Stevens K, Steenberg JWN, Witherspoon K, Nesbitt L, et al. 2021. The digital forest: mapping a decade of knowledge on technological applications for forest ecosystems. Earth's Future 9:e2021EF002123 doi: 10.1029/2021EF002123 |
| [25] |
Shivaprakash KN, Swami N, Mysorekar S, Arora R, Gangadharan A, et al. 2022. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability 14:7154 doi: 10.3390/su14127154 |
| [26] |
Vertakova Y, Agamagomedova S, Sergeeva I, Tarasov AV, Morkovina S, et al. 2022. Digital mechanisms of management system optimization in the forest industry. In Research Anthology on Ecosystem Conservation and Preserving Biodiversity. Hershey, PA: IGI Global Scientific Publishing. pp. 424−42. doi: 10.4018/978-1-6684-5678-1.ch022 |
| [27] |
Bishop ID, Karadaglis C. 1997. Linking modelling and visualisation for natural resources management. Environment and Planning B: Planning and Design 24:345−58 doi: 10.1068/b240345 |
| [28] |
VonHoldt BM, Brzeski KE, Wilcove DS, Rutledge LY. 2018. Redefining the role of admixture and genomics in species conservation. Conservation Letters 11:e12371 doi: 10.1111/conl.12371 |
| [29] |
Coates DJ, Byrne M, Moritz C. 2018. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Frontiers in Ecology and Evolution 6:165 doi: 10.3389/fevo.2018.00165 |
| [30] |
Allendorf FW, Hohenlohe PA, Luikart G. 2010. Genomics and the future of conservation genetics. Nature Reviews Genetics 11:697−709 doi: 10.1038/nrg2844 |
| [31] |
Röckel F, Schreiber T, Schüler D, Braun U, Krukenberg I, et al. 2022. PhenoApp: a mobile tool for plant phenotyping to record field and greenhouse observations. F1000Research 11:12 doi: 10.12688/f1000research.74239.2 |
| [32] |
Liao L, Cao L, Xie Y, Luo J, Wang G. 2022. Phenotypic traits extraction and genetic characteristics assessment of Eucalyptus trials based on UAV-borne LiDAR and RGB images. Remote Sensing 14:765 doi: 10.3390/rs14030765 |
| [33] |
Hardisty AR, Ellwood ER, Nelson G, Zimkus B, Buschbom J, et al. 2022. Digital extended specimens: enabling an extensible network of biodiversity data records as integrated digital objects on the Internet. Bioscience 72:978−87 doi: 10.1093/biosci/biac060 |
| [34] |
Uddin S, Khan A, Hossain ME, Moni MA. 2019. Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making 19:281 doi: 10.1186/s12911-019-1004-8 |
| [35] |
Paudel D, Boogaard H, de Wit A, Janssen S, Osinga S, et al. 2021. Machine learning for large-scale crop yield forecasting. Agricultural Systems 187:103016 doi: 10.1016/j.agsy.2020.103016 |
| [36] |
Wei P, Wang D, Zhao Y, Tyagi SKS, Kumar N. 2020. Blockchain data-based cloud data integrity protection mechanism. Future Generation Computer Systems 102:902−11 doi: 10.1016/j.future.2019.09.028 |
| [37] |
Lai K. 2016. WheatGenome.info: a resource for wheat genomics resource. In Plant Bioinformatics, ed. Edwards D. Vol. 1374. New York, NY:Humana Press. pp. 203−13. doi: 10.1007/978-1-4939-3167-5_10 |
| [38] |
Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, et al. 2008. The Rice Annotation Project Database (RAP-DB): 2008 Update. Nucleic Acids Research 36:D1028−D1033 doi: 10.1093/nar/gkm978 |
| [39] |
Johnson C, Bowman L, Adai AT, Vance V, Sundaresan V. 2007. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Research 35:D829−D833 doi: 10.1093/nar/gkl991 |
| [40] |
Harper L, Gardiner J, Andorf C, Lawrence CJ. 2016. MaizeGDB: the maize genetics and genomics database. In Plant Bioinformatics, ed. Edwards D. Vol. 1374. New York, NY: Humana Press. pp. 187−202. doi: 10.1007/978-1-4939-3167-5_9 |
| [41] |
Grant D, Nelson RT, Cannon SB, Shoemaker RC. 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research 38:D843−D846 doi: 10.1093/nar/gkp798 |
| [42] |
Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, et al. 2018. Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Science 58:451−68 doi: 10.2135/cropsci2017.05.0303 |
| [43] |
Qi H, Quan L, Wang Y, Huang X, Zhang X, et al. 2018. Design and implementation of the information sharing platform of forest germplasm resources in the Bailong River and the Taohe River forest areas. Journal of Sichuan Forestry Science Technology 39:70−76,82 doi: 10.16779/j.cnki.1003-5508.2018.03.015 |
| [44] |
Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, et al. 2018. Pecan nuts: a review of reported bioactivities and health effects. Trends in Food Science & Technology 71:246−57 doi: 10.1016/j.jpgs.2017.10.019 |
| [45] |
Lu AM, Stone DE, Grauke L. 1999. Juglandaceae. Flora of China 4:277−85 |
| [46] |
Chang RH, Lu AM. 1979. A study of the genus Carya Nutt. in China. Acta Phytotaxonomica Sinica 17:40−44 |
| [47] |
Farooq TH, Yan W, Rashid MHU, Tigabu M, Gilani MM, et al. 2019. Chinese fir (Cunninghamia Lanceolata) a green gold of china with continues decline in its productivity over the successive rotations: a review. Applied Ecology Environmental Research Letters 17:11055−67 doi: 10.15666/aeer/1705_1105511067 |
| [48] |
Qiu Z, Wan L, Chen T, Wan Y, He X, et al. 2013. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. New Phytologist 199:708−19 doi: 10.1111/nph.12301 |
| [49] |
Zhou L, Cai L, He Z, Wang R, Wu P, et al. 2016. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in Southern China. Environmental Science and Pollution Research 23:24135−50 doi: 10.1007/s11356-016-7624-y |
| [50] |
Ding Y, Zhang J, Lu Y, Lin EP, Lou L, et al. 2015. Development of EST-SSR markers and analysis of genetic diversity in natural populations of endemic and endangered plant Phoebe chekiangensis. Biochemical Systematics and Ecology 63:183−89 doi: 10.1016/j.bse.2015.10.008 |
| [51] |
Li Y, Xu W, Zou W, Jiang D, Liu X. 2017. Complete chloroplast genome sequences of two endangered Phoebe (Lauraceae) species. Botanical Studies 58:37 doi: 10.1186/s40529-017-0192-8 |
| [52] |
Zhang W, Li TH, Wen SZ, He GX, Shen Z, et al. 2013. Inhibition effect of extraction from seed of Phoebe bournei. Advanced Materials Research 726−731:4468−72 doi: 10.4028/www.scientific.net/AMR.726-731.4468 |
| [53] |
Aslam FA, Mohammed HN, Lokhande PS. 2015. Efficient way of web development using python and flask. International Journal of Advanced Research in Computer Science 6:54−57 |
| [54] |
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, et al. 2018. Quantitative genetics and genomics converge to accelerate forest tree breeding. Frontiers in Plant Science 9:1693 doi: 10.3389/fpls.2018.01693 |
| [55] |
Badenes ML, Fernández i Martí A, Ríos G, Rubio-Cabetas MJ. 2016. Application of genomic technologies to the breeding of trees. Frontiers in Genetics 7:198 doi: 10.3389/fgene.2016.00198 |
| [56] |
Zhang M, Chen X, Lou X, Zhang Y, Han X, et al. 2023. Identification of WUSCHEL-related homeobox (WOX) gene family members and determination of their expression profiles during somatic embryogenesis in Phoebe bournei. Forestry Research 3:5 doi: 10.48130/FR-2023-0005 |
| [57] |
Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, et al. 2019. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience 8:giz036 doi: 10.1093/gigascience/giz036 |
| [58] |
Han X, Zhang J, Han S, Chong SL, Meng G, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications 3:100410 doi: 10.1016/j.xplc.2022.100410 |
| [59] |
Xie Y, Hou Z, Shi M, Wang Q, Yang Z, et al. 2023. Transcriptional regulation of female and male flower bud initiation and development in pecan (Carya illinoensis). Plants 12:1378 doi: 10.3390/plants12061378 |
| [60] |
Huang C, Li Y, Wang K, Xi J, Xu Y, et al. 2022. Integrated transcriptome and proteome analysis of developing embryo reveals the mechanisms underlying the high levels of oil accumulation in Carya cathayensis Sarg. Tree Physiology 42:684−702 doi: 10.1093/treephys/tpab112 |
| [61] |
Xing Y, Wang K, Huang C, Huang J, Zhao Y, et al. 2022. Global transcriptome analysis revealed the molecular regulation mechanism of pigment and reactive oxygen species metabolism during the stigma development of Carya cathayensis. Frontiers in Plant Science 13:881349 doi: 10.3389/fpls.2022.881394 |
| [62] |
Zhuang H, Chong SL, Priyanka B, Han X, Lin E, et al. 2021. Full-length transcriptomic identification of R2R3-MYB family genes related to secondary cell wall development in Cunninghamia lanceolata (Chinese fir). BMC Plant Biology 21:581 doi: 10.1186/s12870-021-03322-w |
| [63] |
Harfouche A, Meilan R, Altman A. 2014. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology 34:1181−98 doi: 10.1093/treephys/tpu012 |
| [64] |
Pieruschka R, Schurr U. 2019. Plant phenotyping: past, present, and future. Plant Phenomics 2019:7507131 doi: 10.34133/2019/7507131 |
| [65] |
Chen B, Shi B, Gong J, Shi G, Jin H, et al. 2024. Quality detection and variety classification of pecan seeds using hyperspectral imaging technology combined with machine learning. Journal of Food Composition and Analysis 131:106248 doi: 10.1016/j.jfca.2024.106248 |
| [66] |
O'Kelly BC. 2004. Accurate determination of moisture content of organic soils using the oven drying method. Drying Technology 22:1767−76 doi: 10.1081/DRT-200025642 |
| [67] |
Virot M, Tomao V, Ginies C, Visinoni F, Chemat F. 2008. Green procedure with a green solvent for fats and oils' determination Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. Journal of Chromatography A 1196:147−52 doi: 10.1016/j.chroma.2008.04.035 |
| [68] |
Wang S, Copeland L. 2015. Effect of acid hydrolysis on starch structure and functionality: a review. Critical Reviews in Food Science and Nutrition 55:1081−97 doi: 10.1080/10408398.2012.684551 |
| [69] |
Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural and Food Chemistry 58:9043−53 doi: 10.1021/jf1008023 |
| [70] |
Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, et al. 2008. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. Journal of Separation Science 31:1352−62 doi: 10.1002/jssc.200700503 |
| [71] |
Guo W, Jin H, Chen J, Huang J, Zheng D, et al. 2022. GROP: a genomic information repository for oilplants. Frontiers in Plant Science 13:1023938 doi: 10.3389/fpls.2022.1023938 |
| [72] |
Guo W, Chen J, Li J, Huang J, Wang Z, et al. 2020. Portal of Juglandaceae: a comprehensive platform for Juglandaceae study. Horticulture Research 7:35 doi: 10.1038/s41438-020-0256-x |
| [73] |
Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962 doi: 10.1371/journal.pone.0163962 |
| [74] |
Talevich E, Invergo BM, Cock PJA, Chapman BA. 2012. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics 13:209 doi: 10.1186/1471-2105-13-209 |
| [75] |
Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38:e164 doi: 10.1093/nar/gkq603 |
| [76] |
Piriyapongsa J, Kaewprommal P, Vaiwsri S, Anuntakarun S, Wirojsirasak W, et al. 2018. Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing. PeerJ 6:e5818 doi: 10.7717/peerj.5818 |
| [77] |
Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular biology open software suite. Trends in Genetics 16:276−77 doi: 10.1016/S0168-9525(00)02024-2 |
| [78] |
Tzfadia O, Bocobza S, Defoort J, Almekias-Siegl E, Panda S, et al. 2018. The 'TranSeq' 3'-end sequencing method for high-throughput transcriptomics and gene space refinement in plant genomes. The Plant Journal 96:223−32 doi: 10.1111/tpj.14015 |
| [79] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
| [80] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
| [81] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635 |
| [82] |
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323 |
| [83] |
Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. 2006. Review: a gentle introduction to imputation of missing values. Journal of Clinical Epidemiology 59:1087−91 doi: 10.1016/j.jclinepi.2006.01.014 |
| [84] |
Riaz M. 2015. On enhanced interquartile range charting for process dispersion. Quality and Reliability Engineering International 31:389−98 doi: 10.1002/qre.1598 |
| [85] |
Beazley D. 2012. Data Processing with Pandas. Login 37:76−81 |
| [86] |
Cheadle C, Vawter MP, Freed WJ, Becker KG. 2003. Analysis of microarray data using Z score transformation. The Journal of Molecular Diagnostics 5:73−81 doi: 10.1016/S1525-1578(10)60455-2 |
| [87] |
Osborne JW. 2010. Improving your data transformations: applying the box-cox transformation. Practical Assessment, Research & Evaluation 15:1−9 |
| [88] |
Koprowski R. 2015. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab. Journal of Biophotonics 8:935−43 doi: 10.1002/jbio.201400133 |
| [89] |
Peng X, Shi T, Song A, Chen Y, Gao W. 2014. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sensing 6:2699−717 doi: 10.3390/rs6042699 |
| [90] |
Du Q, Fowler JE. 2007. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geoscience and Remote Sensing Letters 4:201−05 doi: 10.1109/LGRS.2006.888109 |
| [91] |
Diesh C, Stevens GJ, Xie P, De Jesus Martinez T, Hershberg EA, et al. 2023. JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biology 24:74 doi: 10.1186/s13059-023-02914-z |
| [92] |
Priyam A, Woodcroft BJ, Rai V, Moghul I, Munagala A, et al. 2019. Sequenceserver: a modern graphical user interface for custom BLAST databases. Molecular Biology and Evolution 36:2922−24 doi: 10.1093/molbev/msz185 |
| [93] |
Danecek P, Bonfield KJ, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008 doi: 10.1093/gigascience/giab008 |
| [94] |
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238 doi: 10.1186/s13059-019-1832-y |
| [95] |
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47:D309−D314 doi: 10.1093/nar/gky1085 |
| [96] |
Waskom M. 2021. Seaborn: statistical data visualization. Journal of Open Source Software 6:3021 doi: 10.21105/joss.03021 |
| [97] |
Li D, Mei H, Shen Y, Su S, Zhang W, et al. 2018. ECharts: a declarative framework for rapid construction of web-based visualization. Visual Informatics 2:136−46 doi: 10.1016/j.visinf.2018.04.011 |
| [98] |
Zoubir AM, Iskandler DR, Karl PD, Hofmann H. 2007. Bootstrap methods and applications. IEEE Signal Processing Magazine 24:10−19 doi: 10.1109/MSP.2007.4286560 |
| [99] |
Christudas B. 2019. Install, configure, and run nginx reverse proxy. In Practical Microservices Architectural Patterns Berkeley, CA: Apress. pp. 843–46. doi: 10.1007/978-1-4842-4501-9_22 |
| [100] |
Kong Q, Yuan L, Ma W. 2019. WRINKLED1, a "master regulator" in transcriptional control of plant oil biosynthesis. Plants 8:238 doi: 10.3390/plants8070238 |
| [101] |
Xue D, Zhang X, Lu X, Chen G, Chen ZH. 2017. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science 8:621 doi: 10.3389/fpls.2017.00621 |
| [102] |
Baud S, Lepiniec L. 2010. Physiological and developmental regulation of seed oil production. Progress in Lipid Research 49:235−49 doi: 10.1016/j.plipres.2010.01.001 |
| [103] |
Huang R, Liu M, Gong G, Wu P, Bai M, et al. 2022. BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. The Plant Cell 34:2242−65 doi: 10.1093/plcell/koac083 |
| [104] |
Huang J, Zhang T, Zhang Q, Chen M, Wang Z, et al. 2016. The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg. BMC Genomics 17:113 doi: 10.1186/s12864-016-2434-7 |
| [105] |
Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51−80 doi: 10.1016/S0163-7827(02)00045-0 |