[1]

Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, et al. 2023. A review of plants strategies to resist biotic and abiotic environmental stressors. Science of The Total Environment 900:165832

doi: 10.1016/j.scitotenv.2023.165832
[2]

Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. 2021. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology 63:102−25

doi: 10.1111/jipb.13028
[3]

Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M. 2015. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiology 169:2380−90

doi: 10.1104/pp.15.01361
[4]

Wuriyanghan H, Zhang B, Cao WH, Ma B, Lei G, et al. 2009. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. The Plant Cell 21:1473−94

doi: 10.1105/tpc.108.065391
[5]

Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. 2014. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science 5:539

[6]

Dubois M, Van den Broeck L, Inzé D. 2018. The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science 23:311−23

doi: 10.1016/j.tplants.2018.01.003
[7]

Lin Z, Zhong S, Grierson D. 2009. Recent advances in ethylene research. Journal of Experimental Botany 60:3311−36

doi: 10.1093/jxb/erp204
[8]

He Z, Zhang P, Jia H, Zhang S, Nishawy E, et al. 2024. Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 1:100029

doi: 10.1016/j.ncrops.2024.100029
[9]

Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Current Biology 25:R899−R910

doi: 10.1016/j.cub.2015.08.029
[10]

Wang Y, Jiang L, Kong D, Meng J, Song M, et al. 2024. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. New Phytologist 242:1996−2010

doi: 10.1111/nph.19728
[11]

Ju C, Van de Poel B, Cooper ED, Thierer JH, Gibbons TR, et al. 2015. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nature Plants 1:14004

doi: 10.1038/nplants.2014.4
[12]

Kieber JJ, Schaller GE. 2019. Behind the screen: how a simple seedling response helped unravel ethylene signaling in plants. The Plant Cell 31:1402−03

doi: 10.1105/tpc.19.00342
[13]

Gane R. 1934. Production of ethylene by some ripening fruits. Nature 134:1008

doi: 10.1038/1341008a0
[14]

Adams DO, Yang SF. 1977. Methionine metabolism in apple tissue: implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiology 60:892−96

doi: 10.1104/pp.60.6.892
[15]

Adams DO, Yang SF. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76:170−74

doi: 10.1073/pnas.76.1.170
[16]

Guzmán P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant Cell 2:513−23

doi: 10.1105/tpc.2.6.513
[17]

Bleecker AB, Estelle MA, Somerville C, Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086−9

doi: 10.1126/science.241.4869.1086
[18]

Chen YF, Randlett MD, Findell JL, Schaller GE. 2002. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. Journal of Biological Chemistry 277:19861−6

doi: 10.1074/jbc.M201286200
[19]

Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539−44

doi: 10.1126/science.8211181
[20]

Hua J, Chang C, Sun Q, Meyerowitz EM. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712−4

doi: 10.1126/science.7569898
[21]

Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, et al. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. The Plant Cell 10:1321−32

doi: 10.1105/tpc.10.8.1321
[22]

Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, et al. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 95:5812−17

doi: 10.1073/pnas.95.10.5812
[23]

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427−41

doi: 10.1016/0092-8674(93)90119-B
[24]

Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148−52

doi: 10.1126/science.284.5423.2148
[25]

Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, et al. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133−44

doi: 10.1016/S0092-8674(00)80300-1
[26]

An F, Zhao Q, Ji Y, Li W, Jiang Z, et al. 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell 22:2384−401

doi: 10.1105/tpc.110.076588
[27]

Solano R, Stepanova A, Chao Q, Ecker JR. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development 12:3703−14

doi: 10.1101/gad.12.23.3703
[28]

Guo H, Ecker JR. 2003. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667−77

doi: 10.1016/S0092-8674(03)00969-3
[29]

Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, et al. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679−89

doi: 10.1016/S0092-8674(03)00968-1
[30]

Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, et al. 2007. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. The Plant Cell 19:509−23

doi: 10.1105/tpc.106.048140
[31]

Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, et al. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the United States of America 101:6803−8

doi: 10.1073/pnas.0401698101
[32]

Qiao H, Chang KN, Yazaki J, Ecker JR. 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development 23:512−21

doi: 10.1101/gad.1765709
[33]

Zhang F, Wang L, Qi B, Zhao B, Ko EE, et al. 2017. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America 114:10274−79

doi: 10.1073/pnas.1707937114
[34]

Zhang F, Wang L, Ko EE, Shao K, Qiao H. 2018. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. The Plant Cell 30:153−66

doi: 10.1105/tpc.17.00671
[35]

Shao Z, Bian L, Ahmadi SK, Daniel TJ, Belmonte MA, et al. 2024. Nuclear pyruvate dehydrogenase complex regulates histone acetylation and transcriptional regulation in the ethylene response. Science Advances 10:eado2825

doi: 10.1126/sciadv.ado2825
[36]

Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, et al. 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390−3

doi: 10.1126/science.1225974
[37]

Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, et al. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109:19486−91

doi: 10.1073/pnas.1214848109
[38]

Wen X, Zhang C, Ji Y, Zhao Q, He W, et al. 2012. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research 22:1613−16

doi: 10.1038/cr.2012.145
[39]

Li W, Ma M, Feng Y, Li H, Wang Y, et al. 2015. EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670−83

doi: 10.1016/j.cell.2015.09.037
[40]

Merchante C, Brumos J, Yun J, Hu Q, Spencer K, et al. 2015. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163:684−97

doi: 10.1016/j.cell.2015.09.036
[41]

Park HL, Seo DH, Lee HY, Bakshi A, Park C, et al. 2023. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nature Communications 14:365

doi: 10.1038/s41467-023-35975-6
[42]

Scharein B, Voet-van-Vormizeele J, Harter K, Groth G. 2008. Ethylene signaling: identification of a putative ETR1-AHP1 phosphorelay complex by fluorescence spectroscopy. Analytical Biochemistry 377:72−76

doi: 10.1016/j.ab.2008.03.015
[43]

Zdarska M, Cuyacot AR, Tarr PT, Yamoune A, Szmitkowska A, et al. 2019. ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth. Molecular Plant 12:1338−52

doi: 10.1016/j.molp.2019.05.012
[44]

Scharein B, Groth G. 2011. Phosphorylation alters the interaction of the Arabidopsis phosphotransfer protein AHP1 with its sensor kinase ETR1. PLoS ONE 6:e24173

doi: 10.1371/journal.pone.0024173
[45]

Binder BM, Kim HJ, Mathews DE, Hutchison CE, Kieber JJ, et al. 2018. A role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene. Plant Direct 2:e00058

doi: 10.1002/pld3.58
[46]

Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324:7−14

doi: 10.1111/nyas.12540
[47]

Yang C, Lu X, Ma B, Chen SY, Zhang JS. 2015. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Molecular Plant 8:495−505

doi: 10.1016/j.molp.2015.01.003
[48]

Ma B, Chen S, Zhang J. 2010. Ethylene signaling in rice. Chinese Science Bulletin 55:2204−10

doi: 10.1007/s11434-010-3192-2
[49]

Ma B, He SJ, Duan KX, Yin CC, Chen H, et al. 2013. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Molecular Plant 6:1830−48

doi: 10.1093/mp/sst087
[50]

Zhao H, Duan KX, Ma B, Yin CC, Hu Y, et al. 2020. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nature Communications 11:518

doi: 10.1038/s41467-020-14313-0
[51]

Yau CP, Wang L, Yu M, Zee SY, Yip WK. 2004. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. Journal of Experimental Botany 55:547−56

doi: 10.1093/jxb/erh055
[52]

Yin CC, Ma B, Collinge DP, Pogson BJ, He SJ, et al. 2015. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. The Plant Cell 27:1061−81

doi: 10.1105/tpc.15.00080
[53]

Yang C, Ma B, He SJ, Xiong Q, Duan KX, et al. 2015. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology 169:148−65

doi: 10.1104/pp.15.00353
[54]

Wang Q, Zhang W, Yin Z, Wen CK. 2013. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. Journal of Experimental Botany 64:4863−75

doi: 10.1093/jxb/ert272
[55]

Zhao H, Ma B, Duan KX, Li XK, Lu X, et al. 2020. The GDSL lipase MHZ11 modulates ethylene signaling in rice roots. The Plant Cell 32:1626−43

doi: 10.1105/tpc.19.00840
[56]

Huang YH, Han JQ, Ma B, Cao WQ, Li XK, et al. 2023. A translational regulator MHZ9 modulates ethylene signaling in rice. Nature Communications 14:4674

doi: 10.1038/s41467-023-40429-0
[57]

Chen H, Ma B, Zhou Y, He SJ, Tang SY, et al. 2018. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proceedings of the National Academy of Sciences of the United States of America 115:4513−18

doi: 10.1073/pnas.1719387115
[58]

Ma B, Zhou Y, Chen H, He SJ, Huang YH, et al. 2018. Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proceedings of the National Academy of Sciences of the United States of America 115:2520−25

doi: 10.1073/pnas.1718377115
[59]

Li XK, Huang YH, Zhao R, Cao WQ, Lu L, et al. 2024. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nature Communications 15:5987

doi: 10.1038/s41467-024-50290-4
[60]

Ma B, Yin CC, He SJ, Lu X, Zhang WK, et al. 2014. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genetics 10:e1004701

doi: 10.1371/journal.pgen.1004701
[61]

Zhou Y, Xiong Q, Yin CC, Ma B, Chen SY, et al. 2020. Ethylene biosynthesis, signaling, and crosstalk with other hormones in rice. Small Methods 4:1900278

doi: 10.1002/smtd.201900278
[62]

Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, et al. 2022. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. The Plant Cell 34:4366−87

doi: 10.1093/plcell/koac250
[63]

Azhar BJ, Zulfiqar A, Shakeel SN, Schaller GE. 2020. Amplification and adaptation in the ethylene signaling pathway. Small Methods 4:1900452

doi: 10.1002/smtd.201900452
[64]

Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295:7710−25

doi: 10.1074/jbc.REV120.010854
[65]

Gallie DR. 2015. Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Molecular Biology 87:521−39

doi: 10.1007/s11103-015-0296-z
[66]

Shakeel SN, Wang X, Binder BM, Schaller GE. 2013. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:plt010

doi: 10.1093/aobpla/plt010
[67]

Binder BM, Chang C, Schaller G. 2012. Perception of ethylene by plants—ethylene receptors. In Annual Plant Reviews: The Plant Hormone Ethylene, ed. McManus MT. vol. 44. UK: Blackwell Publishing Ltd. pp. 117−45. doi: 10.1002/9781118223086.ch5

[68]

Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, et al. 2003. Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. The Plant Journal 33:385−93

doi: 10.1046/j.1365-313X.2003.01631.x
[69]

Zhang ZG, Zhou HL, Chen T, Gong Y, Cao WH, et al. 2004. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiology 136:2971−81

doi: 10.1104/pp.103.034686
[70]

Moussatche P, Klee HJ. 2004. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. Journal of Biological Chemistry 279:48734−41

doi: 10.1074/jbc.M403100200
[71]

Hua J, Meyerowitz EM. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261−71

doi: 10.1016/S0092-8674(00)81425-7
[72]

Liu Q, Wen CK. 2012. Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. Plant Physiology 158:1193−207

doi: 10.1104/pp.111.187757
[73]

Chen Y, Hu G, Rodriguez C, Liu M, Binder BM, et al. 2020. Roles of SlETR7, a newly discovered ethylene receptor, in tomato plant and fruit development. Horticulture Research 7:17

doi: 10.1038/s41438-020-0239-y
[74]

Liu Q, Xu C, Wen CK. 2010. Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biology 10:60

doi: 10.1186/1471-2229-10-60
[75]

Chen T, Liu J, Lei G, Liu Y, Li ZG, et al. 2009. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant and Cell Physiology 50:1636−50

doi: 10.1093/pcp/pcp107
[76]

Berleth M, Berleth N, Minges A, Hänsch S, Burkart RC, et al. 2019. Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies. Frontiers in Plant Science 10:726

doi: 10.3389/fpls.2019.00726
[77]

Clark KL, Larsen PB, Wang X, Chang C. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proceedings of the National Academy of Sciences of the United States of America 95:5401−6

doi: 10.1073/pnas.95.9.5401
[78]

Shakeel SN, Gao Z, Amir M, Chen YF, Rai MI, et al. 2015. Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana. Journal of Biological Chemistry 290:12415−24

doi: 10.1074/jbc.M115.652503
[79]

Schaller GE, Bleecker AB. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809−11

doi: 10.1126/science.270.5243.1809
[80]

Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiology 123:1449−58

doi: 10.1104/pp.123.4.1449
[81]

Rodríguez F, Esch J, Hall A, Binder B, Schaller G, Bleecker A. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996−8

doi: 10.1126/science.283.5404.996
[82]

Schott-Verdugo S, Müller L, Classen E, Gohlke H, Groth G. 2019. Structural model of the ETR1 ethylene receptor transmembrane sensor domain. Scientific Reports 9:8869

doi: 10.1038/s41598-019-45189-w
[83]

Hall AE, Chen QG, Findell JL, Eric Schaller G, Bleecker AB. 1999. The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiology 121:291−300

doi: 10.1104/pp.121.1.291
[84]

Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, et al. 2023. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 120:e2215195120

doi: 10.1073/pnas.2215195120
[85]

Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. 2004. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiology 136:2921−27

doi: 10.1104/pp.104.050393
[86]

Resnick JS, Wen CK, Shockey JA, Chang C. 2006. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103:7917−22

doi: 10.1073/pnas.0602239103
[87]

Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C. 2008. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. The Plant Journal 53:275−86

doi: 10.1111/j.1365-313X.2007.03339.x
[88]

Dong CH, Jang M, Scharein B, Malach A, Rivarola M, et al. 2010. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. Journal of Biological Chemistry 285:40706−13

doi: 10.1074/jbc.M110.146605
[89]

Qiu L, Xie F, Yu J, Wen CK. 2012. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiology 159:1263−76

doi: 10.1104/pp.112.193979
[90]

Zhang W, Zhou X, Wen CK. 2012. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. Journal of Experimental Botany 63:4151−64

doi: 10.1093/jxb/ers098
[91]

Barry CS, Giovannoni JJ. 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America 103:7923−28

doi: 10.1073/pnas.0602319103
[92]

Shi J, Drummond BJ, Wang H, Archibald RL, Habben JE. 2016. Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction. Plant Physiology 171:2783−97

doi: 10.1104/pp.16.00347
[93]

Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, et al. 2015. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiology 169:266−82

doi: 10.1104/pp.15.00780
[94]

Chang J, Clay JM, Chang C. 2014. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. The Plant Journal 77:558−67

doi: 10.1111/tpj.12401
[95]

Wang H, Sun Y, Chang J, Zheng F, Pei H, et al. 2016. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Molecular Biology 91:471−84

doi: 10.1007/s11103-016-0482-7
[96]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94

doi: 10.1038/s41580-022-00479-6
[97]

Wang F, Wang L, Qiao L, Chen J, Pappa MB, et al. 2017. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. Journal of Integrative Plant Biology 59:810−24

doi: 10.1111/jipb.12570
[98]

Chen J, Sui X, Ma B, Li Y, Li N, et al. 2022. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. Plant Cell Reports 41:1075−85

doi: 10.1007/s00299-022-02838-1
[99]

Lin Z, Ho CW, Grierson D. 2009. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. Journal of Experimental Botany 60:3697−714

doi: 10.1093/jxb/erp209
[100]

Cao YR, Chen HW, Li ZG, Tao JJ, Ma B, et al. 2015. Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses. Plant Cell Physiology 56:803−18

doi: 10.1093/pcp/pcv009
[101]

Tao JJ, Cao YR, Chen HW, Wei W, Li QT, et al. 2015. Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiology 169:96−114

doi: 10.1104/pp.15.00355
[102]

Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, et a. 2007. Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. Journal of Biological Chemistry 282:24752−58

doi: 10.1074/jbc.M704419200
[103]

Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant Journal 51:458−67

doi: 10.1111/j.1365-313X.2007.03170.x
[104]

Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J. 2012. Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. Journal of Molecular Biology 415:768−79

doi: 10.1016/j.jmb.2011.11.046
[105]

Kamiyoshihara Y, Achiha Y, Ishikawa S, Mizuno S, Mori H, et al. 2022. Heteromeric interactions of ripening-related ethylene receptors in tomato fruit. Journal of Experimental Botany 73:6773−83

doi: 10.1093/jxb/erac314
[106]

Gao Z, Wen CK, Binder BM, Chen YF, Chang J, et al. 2008. Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. Journal of Biological Chemistry 283:23801−10

doi: 10.1074/jbc.M800641200
[107]

Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, et al. 2007. AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant Cell and Physiology 48:375−80

doi: 10.1093/pcp/pcl065
[108]

Zhang J, Yu J, Wen CK. 2014. An alternate route of ethylene receptor signaling. Frontiers in Plant Science 5:648

doi: 10.3389/fpls.2014.00648
[109]

Qu X, Hall BP, Gao Z, Schaller GE. 2007. A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biology 7:3

doi: 10.1186/1471-2229-7-3
[110]

Bisson MMA, Groth G. 2010. New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Molecular Plant 3:882−89

doi: 10.1093/mp/ssq036
[111]

Bisson MMA, Bleckmann A, Allekotte S, Groth G. 2009. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemical Journal 424:1−6

doi: 10.1042/BJ20091102
[112]

Varma Penmetsa R, Uribe P, Anderson J, Lichtenzveig J, Gish JC, et al. 2008. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. The Plant Journal 55:580−95

doi: 10.1111/j.1365-313X.2008.03531.x
[113]

Huang W, Hu N, Xiao Z, Qiu Y, Yang Y, et al. 2022. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. The Plant Cell 34:3280−300

doi: 10.1093/plcell/koac146
[114]

Chen R, Binder BM, Garrett WM, Tucker ML, Chang C, et al. 2011. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular BioSystems 7:2637−50

doi: 10.1039/c1mb05159h
[115]

Jun SH, Han MJ, Lee S, Seo YS, Kim WT, et al. 2004. OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiology 45:281−89

doi: 10.1093/pcp/pch033
[116]

Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, et al. 2006. ETHYLENE-INSENSITIVE5 encodes a 5'→3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences of the United States of America 103:13286−93

doi: 10.1073/pnas.0605528103
[117]

Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, et al. 2006. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. The Plant Cell 18:3047−57

doi: 10.1105/tpc.106.046508
[118]

Jiang B, Shi Y, Zhang X, Xin X, Qi L, et al. 2017. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:E6695−E6702

doi: 10.1073/pnas.1706226114
[119]

Hao D, Jin L, Wen X, Yu F, Xie Q, et al. 2021. The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2024592118

doi: 10.1073/pnas.2024592118
[120]

Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, et al. 2010. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. Journal of Experimental Botany 61:697−708

doi: 10.1093/jxb/erp332
[121]

Deng H, Pirrello J, Chen Y, Li N, Zhu S, et al. 2018. A novel tomato F-box protein, SlEBF3, is involved in tuning ethylene signaling during plant development and climacteric fruit ripening. The Plant Journal 95:648−58

doi: 10.1111/tpj.13976
[122]

Stepanova AN, Ecker JR. 2000. Ethylene signaling: from mutants to molecules. Current Opinion in Plant Biology 3:353−60

doi: 10.1016/S1369-5266(00)00096-0
[123]

Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV. 2019. Shaping ethylene response: The role of EIN3/EIL1 transcription factors. Frontiers in Plant Science 10:1030

doi: 10.3389/fpls.2019.01030
[124]

Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, et al. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675

doi: 10.7554/eLife.00675
[125]

Heydlauff J, Erbasol Serbes I, Vo D, Mao Y, Gieseking S, et al. 2022. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. Molecular Plant 15:363−71

doi: 10.1016/j.molp.2021.11.015
[126]

Zhang X, Ji Y, Xue C, Ma H, Xi Y, et al. 2018. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. The Plant Cell 30:1971−88

doi: 10.1105/tpc.18.00018
[127]

Peng J, Li Z, Wen X, Li W, Shi H, et al. 2014. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics 10:e1004664

doi: 10.1371/journal.pgen.1004664
[128]

Liu C, Ma T, Yuan D, Zhou Y, Long Y, et al. 2022. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal 20:1470−86

doi: 10.1111/pbi.13825
[129]

Ma F, Yang X, Shi Z, Miao X. 2020. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytologist 225:474−87

doi: 10.1111/nph.16111
[130]

Qiao J, Quan R, Wang J, Li Y, Xiao D, et al. 2024. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. Plant Communications 5:100771

doi: 10.1016/j.xplc.2023.100771
[131]

Li Y, Wang J, Gao Y, Pandey BK, Peralta Ogorek LL, et al. 2024. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. The Plant Cell 36:2393−409

doi: 10.1093/plcell/koae083
[132]

Taylor I, Lehner K, McCaskey E, Nirmal N, Ozkan-Aydin Y, et al. 2021. Mechanism and function of root circumnutation. Proceedings of the National Academy of Sciences of the United States of America 118:e2018940118

doi: 10.1073/pnas.2018940118
[133]

Xiong Q, Ma B, Lu X, Huang YH, He SJ, et al. 2017. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. The Plant Cell 29:1053−72

doi: 10.1105/tpc.16.00981
[134]

Qin H, Zhang Z, Wang J, Chen X, Wei P, et al. 2017. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genetics 13:e1006955

doi: 10.1371/journal.pgen.1006955
[135]

Lyu Y, Dong X, Niu S, Cao R, Shao G, et al. 2024. An orchestrated ethylene-gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding. Journal of Integrative Plant Biology 66:1427−39

doi: 10.1111/jipb.13671
[136]

Qin H, Pandey BK, Li Y, Huang G, Wang J, et al. 2022. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. The Plant Cell 34:1273−88

doi: 10.1093/plcell/koac008
[137]

Shi H, Shen X, Liu R, Xue C, Wei N, et al. 2016. The red light receptor phytochrome B drectly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Developmental Cell 39:597−610

doi: 10.1016/j.devcel.2016.10.020
[138]

Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, et al. 2023. Multi-Knock-a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nature Plants 9:572−87

doi: 10.1038/s41477-023-01374-4