[1]

Peixoto RS, Voolstra CR, Sweet M, Duarte CM, Carvalho S, et al. 2022. Harnessing the microbiome to prevent global biodiversity loss. Nature Microbiology 7:1726−35

doi: 10.1038/s41564-022-01173-1
[2]

Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, et al. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology 21:640−56

doi: 10.1038/s41579-023-00900-7
[3]

Ahmed A, He P, He P, Wu Y, He Y, et al. 2023. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environment International 173:107819

doi: 10.1016/j.envint.2023.107819
[4]

Wang L, Lu P, Feng S, Hamel C, Sun D, et al. 2024. Strategies to improve soil health by optimizing the plant–soil–microbe–anthropogenic activity nexus. Agriculture, Ecosystems & Environment 359:108750

doi: 10.1016/j.agee.2023.108750
[5]

Fallah N, Pang Z, Zhang C, Tayyab M, Yang Z, et al. 2023. Complementary effects of biochar, secondary metabolites, and bacteria biocontrol agents rejuvenate ratoon sugarcane traits and stimulate soil fertility. Industrial Crops and Products 202:117081

doi: 10.1016/j.indcrop.2023.117081
[6]

Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, et al. 2018. Structure and function of the global topsoil microbiome. Nature 560:233−37

doi: 10.1038/s41586-018-0386-6
[7]

Compant S, Cassan F, Kostić T, Johnson L, Brader G, et al. 2024. Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology 23:9−23

doi: 10.1038/s41579-024-01079-1
[8]

Arif I, Batool M, Schenk PM. 2020. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends in Biotechnology 38:1385−96

doi: 10.1016/j.tibtech.2020.04.015
[9]

Ahmed A, Liu Y, Khan R, He P, He P, et al. 2025. Molecular insights from integrated metabolome-transcriptome into endophyte Bacillus subtilis L1-21 surfactin against citrus Huanglongbing. Microbiological Research 290:127942

doi: 10.1016/j.micres.2024.127942
[10]

Mia MAB, Shamsuddin ZH, Wahab Z, Marziah M. 2010. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured 'musa' plantlets under nitrogen-free hydroponics condition. Australian Journal of Crop Science 4:85

[11]

Beijerinck MW. 1888. Die bacterien der papilionaceenknöllchen. Botanische Zeitung 46:725

[12]

Kloepper JW, Schroth MN. 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642−44

doi: 10.1094/Phyto-71-642
[13]

He S, Li L, Lv M, Wang R, Wang L, et al. 2024. PGPR: key to enhancing crop productivity and achieving sustainable agriculture. Current Microbiology 81:377

doi: 10.1007/s00284-024-03893-5
[14]

El-Deriny MM, Ibrahim DSS, Farag NS. 2024. Rhizobacteria as a potential bioagent against root-galling disease in vegetable crops. In Microbial Biostimulants. New York: Apple Academic Press. pp. 149−76. doi: 10.1201/9781003484837-6

[15]

Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, et al. 2024. Plant-driven assembly of disease-suppressive soil microbiomes. Annual Review of Phytopathology 62:1−30

doi: 10.1146/annurev-phyto-021622-100127
[16]

Santoyo G, Orozco-Mosqueda MdC, Afridi MS, Mitra D, Valencia-Cantero E, et al. 2024. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Frontiers in Microbiology 15:1423980

doi: 10.3389/fmicb.2024.1423980
[17]

Thakur R, Dhar H, Mathew S, Gulati A. 2024. PGPR inoculants journey from lab to land: challenges and limitations. Microbiological Research 289:127910

doi: 10.1016/j.micres.2024.127910
[18]

Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology 27:1231−40

doi: 10.1007/s11274-010-0572-7
[19]

Ruzzi M, Aroca R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 196:124−34

doi: 10.1016/j.scienta.2015.08.042
[20]

Cailleau G, Braissant O, Verrecchia EP. 2004. Biomineralization in plants as a long-term carbon sink. Naturwissenschaften 91:191−94

doi: 10.1007/s00114-004-0512-1
[21]

Patel M, Islam S, Glick BR, Vimal SR, Bhor SA, et al. 2024. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiological Research 289:127895

doi: 10.1016/j.micres.2024.127895
[22]

Chetan K, Varma PK, Chandrasekhar V, Kumar PA, Vasanthi V. 2024. Plant, bacteria and fungi crosstalk: Direct and indirect biocontrol mechanisms of sugarcane rhizoplane Pseudomonas species against Fusarium wilt. Rhizosphere 31:100952

doi: 10.1016/j.rhisph.2024.100952
[23]

Moreno-Velandia CA, Garcia-Arias FL, Dávila-Mora L, Rodríguez E, Villabona-Gélvez A, et al. 2024. The potential of PGPR and Trichoderma-based bioproducts and resistant cultivars as tools to manage clubroot disease in cruciferous crops. Frontiers in Plant Science 14:1323530

doi: 10.3389/fpls.2023.1323530
[24]

Wen T, Ding Z, Thomashow LS, Hale L, Yang S, et al. 2023. Deciphering the mechanism of fungal pathogen‐induced disease‐suppressive soil. New Phytologist 238:2634−50

doi: 10.1111/nph.18886
[25]

Shree B, Jayakrishnan U, Bhushan S. 2022. Impact of key parameters involved with plant-microbe interaction in context to global climate change. Frontiers in Microbiology 13:1008451

doi: 10.3389/fmicb.2022.1008451
[26]

Chadfield VGA, Hartley SE, Redeker KR. 2022. Associational resistance through intercropping reduces yield losses to soil‐borne pests and diseases. New Phytologist 235:2393−405

doi: 10.1111/nph.18302
[27]

Pieterse CMJ, Stringlis IA. 2023. Chemical symphony of coumarins and phenazines in rhizosphere iron solubilization. Proceedings of the National Academy of Sciences 120:e2304171120

doi: 10.1073/pnas.2304171120
[28]

Atieno M, Herrmann L, Nguyen HT, Phan HT, Nguyen NK, et al. 2020. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management 275:111300

doi: 10.1016/j.jenvman.2020.111300
[29]

Li S, Tian Y, Wu K, Ye Y, Yu J, et al. 2018. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560:595−600

doi: 10.1038/s41586-018-0415-5
[30]

Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, et al. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research 283:108541

doi: 10.1016/j.fcr.2022.108541
[31]

Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, et al. 2024. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: Unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. Plant Cell Reports 43:198

doi: 10.1007/s00299-024-03281-0
[32]

Muhammad A, Kong X, Zheng S, Bai N, Li L, et al. 2024. Exploring plant-microbe interactions in adapting to abiotic stress under climate change: a review. Frontiers in Plant Science 15:1482739

doi: 10.3389/fpls.2024.1482739
[33]

Lai Z, Liu Z, Deng Y, Feng W, Zhao Y, et al. 2024. Distinguishing the effects of micro‐and macro‐habitats on plant‐associated microbiomes in the Qinghai‐Tibetan Qaidam Basin. Land Degradation & Development 35:3344−61

doi: 10.1002/ldr.5134
[34]

Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, et al. 2025. Plant–microbiome interactions and their impacts on plant adaptation to climate change. Journal of Integrative Plant Biology 67:826−44

doi: 10.1111/jipb.13863
[35]

Addison SL, Rúa MA, Smaill SJ, Singh BK, Wakelin SA. 2024. Partner or perish: tree microbiomes and climate change. Trends in Plant Science 29:1029−40

doi: 10.1016/j.tplants.2024.03.008
[36]

Tariq A, Ullah I, Sardans J, Graciano C, Mussarat S, et al. 2023. Strigolactones can be a potential tool to fight environmental stresses in arid lands. Environmental Research 229:115966

doi: 10.1016/j.envres.2023.115966
[37]

Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science 176:20−30

doi: 10.1016/j.plantsci.2008.09.014
[38]

Saikia V. 2015. Biochemical characterization and mechanistic study of heavy metal detoxification in the metal resistant bacteria. Tezpur University, India.

[39]

Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, et al. 2022. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiology and Biochemistry 186:279−89

doi: 10.1016/j.plaphy.2022.07.011
[40]

Zhao D, Wang H, Chen S, Yu D, Reiter RJ. 2021. Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends in Plant Science 26:70−82

doi: 10.1016/j.tplants.2020.08.009
[41]

Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell & Environment 44:645−64

doi: 10.1111/pce.13948
[42]

Du B, Haensch R, Alfarraj S, Rennenberg H. 2024. Strategies of plants to overcome abiotic and biotic stresses. Biological Reviews 99:1524−36

doi: 10.1111/brv.13079
[43]

Singh K, Gupta R, Shokat S, Iqbal N, Kocsy G, et al. 2024. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. Physiologia Plantarum 176:e14388

doi: 10.1111/ppl.14388
[44]

Lesk C, Anderson W, Rigden A, Coast O, Jägermeyr J, et al. 2022. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth & Environment 3:872−89

[45]

Mikiciuk G, Miller T, Kisiel A, Cembrowska-Lech D, Mikiciuk M, et al. 2024. Harnessing beneficial microbes for drought tolerance: a review of ecological and agricultural innovations. Agriculture 14:2228

doi: 10.3390/agriculture14122228
[46]

Bolivar-Anillo HJ, González-Rodríguez VE, Cantoral JM, García-Sánchez D, Collado IG, et al. 2021. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology 10:492

doi: 10.3390/biology10060492
[47]

Zarea MJ. 2024. Foliar application of Azospirillum brasilense, salicylic acid and zinc on wheat Performance under rain–fed condition. Cereal Research Communications 00:1−18

doi: 10.1007/s42976-024-00570-y
[48]

Wang F, Jin F, Lin X, Jia F, Song K, et al. 2024. Priestia aryabhattai improves soil environment and promotes alfalfa growth by enhancing rhizosphere microbial carbon sequestration capacity under greenhouse conditions. Current Microbiology 81:420

doi: 10.1007/s00284-024-03946-9
[49]

Ferioun M, Zouitane I, Bouhraoua S, Elouattassi Y, Belahcen D, et al. 2025. Applying microbial biostimulants and drought-tolerant genotypes to enhance barley growth and yield under drought stress. Frontiers in Plant Science 15:1494987

doi: 10.3389/fpls.2024.1494987
[50]

Liu X, Ji H, Zhang C, Sun N, Xia T, et al. 2024. The poly-γ-glutamic acid-producing bacterium Bacillus amyloliquefaciens W25 enhanced the salt tolerance of lettuce by regulating physio-biochemical processes and influencing the rhizosphere soil microbial community. Environmental and Experimental Botany 220:105679

doi: 10.1016/j.envexpbot.2024.105679
[51]

Soares EV, Petropoulos SA, Soares HM. 2022. Bio-based solutions for sustainable development of agriculture. Frontiers in Plant Science 13:1056140

doi: 10.3389/fpls.2022.1056140
[52]

Dong Y, Guo J, Lin H. 2024. Microbe-plant combined remediation technology for heavy metals in soil: a comprehensive review. Water, Air, & Soil Pollution 235:711

doi: 10.1007/s11270-024-07538-y
[53]

Abiala MA. 2025. Rhizobacteria genome sequences: platform for defining mechanisms for sustainable growth of food crops under drought stress. Discover Plants 2:26

doi: 10.1007/s44372-025-00092-9
[54]

Güler M, Öğütcü H. 2024. Isolation and characterization of plant growth promoting rhizobacteria (PGPR) from rhizosphere of Helianthus annuus L. International Journal of Agriculture Environment and Food Sciences 8:412−29

doi: 10.31015/jaefs.2024.2.16
[55]

Muñoz-Carvajal E, González M, Fuentes Y, Oetiker N, Giordano A, et al. 2024. Rhizobacteria Enterobacter sp. LHB11 and Bacillus sp. PIXIE induced systemic tolerance against drought stress in tomato (Solanum lycopersicum). Agronomy 14:3013

doi: 10.3390/agronomy14123013
[56]

Kusale SP, Attar YC, Sayyed RZ, El Enshasy H, Hanapi SZ, et al. 2021. Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy 11:927

doi: 10.3390/agronomy11050927
[57]

Egamberdieva D, Jabborova D, Wirth SJ, Alam P, Alyemeni MN, et al. 2018. Interactive effects of nutrients and Bradyrhizobium japonicum on the growth and root architecture of soybean (Glycine max L.). Frontiers in Microbiology 9:1000

doi: 10.3389/fmicb.2018.01000
[58]

Compant S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19:29−37

doi: 10.1016/j.jare.2019.03.004
[59]

Rodrigues EP, Santos Rodrigues L, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, et al. 2008. Azospirillum amazonense inoculation: effects on growth, yield and N 2 fixation of rice (Oryza sativa L.). Plant and Soil 302:249−61

doi: 10.1007/s11104-007-9476-1
[60]

Cui M, Bao B, Wu Y, Hui N, Li MH, et al. 2024. Light grazing alleviates aeolian erosion–deposition effects on microbial communities in a semi-arid grassland. Ecological Processes 13:31

doi: 10.1186/s13717-024-00510-y
[61]

Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, et al. 2011. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry 43:1450−55

doi: 10.1016/j.soilbio.2011.03.012
[62]

Coban O, De Deyn GB, van der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. Science 375:abe0725

doi: 10.1126/science.abe0725
[63]

Hartman K, van der Heijden MG, Roussely-Provent V, Walser JC, Schlaeppi K. 2017. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:1−13

doi: 10.1186/s40168-016-0220-z
[64]

Jansson JK, Hofmockel KS. 2020. Soil microbiomes and climate change. Nature Reviews Microbiology 18:35−46

doi: 10.1038/s41579-019-0265-7
[65]

Pang Z, Chen J, Wang T, Gao C, Li Z, et al. 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science 12:621276

doi: 10.3389/fpls.2021.621276
[66]

Senko H, Kajić S, Huđ A, Palijan G, Petek M, et al. 2024. Will the beneficial properties of plant-growth promoting bacteria be affected by waterlogging predicted in the wake of climate change: a model study. Applied Soil Ecology 198:105379

doi: 10.1016/j.apsoil.2024.105379
[67]

Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N. 2019. Roles of microbes in supporting sustainable rice production using the system of rice intensification. Applied Microbiology and Biotechnology 103:5131−42

doi: 10.1007/s00253-019-09879-9
[68]

Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, et al. 2019. Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17:569−86

doi: 10.1038/s41579-019-0222-5
[69]

Banerjee S, Van Der Heijden MGA. 2023. Soil microbiomes and one health. Nature Reviews Microbiology 21:6−20

doi: 10.1038/s41579-022-00779-w
[70]

Kılıç O, Boz I, Eryılmaz GA. 2020. Comparison of conventional and good agricultural practices farms: A socio-economic and technical perspective. Journal of Cleaner Production 258:120666

doi: 10.1016/j.jclepro.2020.120666
[71]

Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, et al. 2024. PGPR-enabled bioremediation of pesticide and heavy metal-contaminated soil: a review of recent advances and emerging challenges. Chemosphere 362:142678

doi: 10.1016/j.chemosphere.2024.142678
[72]

Shi WX, Guo JJ, Yu XX, Li ZX, Weng BY, et al. 2024. Diversity and interactions of rhizobacteria determine multinutrient traits in tomato host plants under nitrogen and water disturbances. Horticulture Research 12:uhae290

doi: 10.1093/hr/uhae290
[73]

Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. 2022. Back to our roots: exploring the role of root morphology as a mediator of beneficial plant–microbe interactions. Environmental Microbiology 24:3264−72

doi: 10.1111/1462-2920.15926
[74]

Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, et al. 2020. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research 232:126389

doi: 10.1016/j.micres.2019.126389
[75]

Soliman SA, Abdelhameed RE, Metwally RA. 2023. In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microbial Cell Factories 22:70

doi: 10.1186/s12934-023-02080-8
[76]

Malik L, Sanaullah M, Mahmood F, Hussain S, Siddique MH, et al. 2022. Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture 9:58

doi: 10.1186/s40538-022-00327-x
[77]

Gamalero E, Glick BR. 2020. The use of plant growth-promoting bacteria to prevent nematode damage to plants. Biology 9:381

doi: 10.3390/biology9110381
[78]

Woźniak M, Gałązka A. 2019. The rhizosphere microbiome and its beneficial effects on plants–current knowledge and perspectives. Postępy Mikrobiologii - Advancements of Microbiology 58:59−69

doi: 10.21307/pm-2019.58.1.059
[79]

Kumar A, Dubey A. 2020. Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research 24:337−52

doi: 10.1016/j.jare.2020.04.014
[80]

Serepa-Dlamini M. 2020. Metabolite fingerprinting of culturable endophytic bacteria isolated from Dicoma anomala and their antimicrobial activity. Thesis. University of Johannesburg, South Africa.

[81]

Seth K, Vyas P, Deora S, Gupta AK, Meena M, et al. 2023. Understanding plant-plant growth-promoting rhizobacteria (PGPR) interactions for inducing plant defense. In Plant-microbe interaction − recent advances in molecular and biochemical approaches, eds. Swapnil P, Meena M, Harish, Marwal A, Vijayalakshmi S, et al. The Netherlands: Elsevier. pp. 201−26. doi: 10.1016/b978-0-323-91876-3.00010-5

[82]

Srivastava AK, Singh RD, Pandey GK, Mukherjee PK, Foyer CH. 2025. Unravelling the molecular dialogue of beneficial microbe − plant interactions. Plant, Cell & Environment 48:2534−48

doi: 10.1111/pce.15245
[83]

Berg G, Dorador C, Egamberdieva D, Kostka JE, Ryu CM, et al. 2024. Shared governance in the plant holobiont and implications for one health. FEMS Microbiology Ecology 100:fiae004

doi: 10.1093/femsec/fiae004
[84]

Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Kumar A, et al. 2024. PGPR-mediated breakthroughs in plant stress tolerance for sustainable farming. Journal of Plant Growth Regulation 43:2955−71

doi: 10.1007/s00344-023-11013-z
[85]

Enebe MC, Babalola OO. 2019. The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Applied Microbiology and Biotechnology 103:9−25

doi: 10.1007/s00253-018-9433-3
[86]

Sharma S, Chen C, Navathe S, Chand R, Pandey SP. 2019. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Scientific Reports 9:4054

doi: 10.1038/s41598-019-40930-x
[87]

Sangiorgio D, Cellini A, Donati I, Pastore C, Onofrietti C, et al. 2020. Facing climate change: application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy 10:794

doi: 10.3390/agronomy10060794
[88]

Mohanraj J, Subramanian KS, Yuvaraj M. 2024. Nano-fibre matrix loaded with multi-nutrients to achieve balanced crop nutrition in greengram (Vigna radiata L.). Plant Physiology and Biochemistry 207:108369

doi: 10.1016/j.plaphy.2024.108369
[89]

Soares JC, Santos CS, Carvalho SMP, Pintado MM, Vasconcelos MW. 2019. Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant and Soil 443:1−26

doi: 10.1007/s11104-019-04229-0
[90]

Zhang X, Ward BB, Sigman DM. 2020. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews 120:5308−51

doi: 10.1021/acs.chemrev.9b00613
[91]

Rutledge HL, Cook BD, Nguyen HPM, Herzik MA Jr, Tezcan FA. 2022. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 377:865−69

doi: 10.1126/science.abq7641
[92]

Uesaka K, Banba M, Chiba S, Fujita Y. 2024. Restoration of the functional nif gene cluster by complex recombination events during heterocyst development in the nitrogen-fixing cyanobacterium Calothrix sp. NIES-4101. Plant and Cell Physiology 65:1050−64

doi: 10.1093/pcp/pcae011
[93]

Srivastava D, Ghosh AK, Ranjan A, Sinharoy S. 2024. Genome sequencing of Mesorhizobium Spp. NI-7, an efficient nitrogen-fixing microsymbiont of chickpea with potential to unravel the molecular mechanisms of symbiotic nitrogen fixation in legumes. Journal of Plant Biochemistry and Biotechnology 33:607−14

doi: 10.1007/s13562-024-00917-w
[94]

Chieb M, Gachomo EW. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology 23:407

doi: 10.1186/s12870-023-04403-8
[95]

Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment 743:140682

doi: 10.1016/j.scitotenv.2020.140682
[96]

Li N, Wen J, Wu R, Hu D, Zhang L, et al. 2023. Dual effects of plant growth-promoting rhizobacteria (PGPR) on the Moso bamboo-soil system: Plant growth promotion and microbial community stability. Industrial Crops and Products 203:117151

doi: 10.1016/j.indcrop.2023.117151
[97]

Benidire L, Madline A, Pereira SIA, Castro PML, Boularbah A. 2021. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere 262:127803

doi: 10.1016/j.chemosphere.2020.127803
[98]

Guimarà VF, Klein J, Ferreira MB. 2020. Promotion of rice growth and productivity as a result of seed inoculation with Azospirillum brasilense. African Journal of Agricultural Research 16:765−76

doi: 10.5897/AJAR2020.14723
[99]

Zhang J, Hussain S, Zhao F, Zhu L, Cao X, et al. 2018. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. Journal of Soils and Sediments 18:1453−65

doi: 10.1007/s11368-017-1861-7
[100]

Karimzadeh J, Ali Alikhani H, Etesami H, Ali Pourbabaei A. 2021. Improved phosphorus uptake by wheat plant (Triticum aestivum L.) with rhizosphere fluorescent pseudomonads strains under water-deficit stress. Journal of Plant Growth Regulation 40:162−78

doi: 10.1007/s00344-020-10087-3
[101]

Liu X, Jiang X, He X, Zhao W, Cao Y, et al. 2019. Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. Journal of Plant Growth Regulation 38:1314−24

doi: 10.1007/s00344-019-09935-8
[102]

Mabood F, Smith DL. 2005. Pre‐incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiologia Plantarum 125:311−23

doi: 10.1111/j.1399-3054.2005.00559.x
[103]

Lastochkina O. 2019. Bacillus subtilis-mediated abiotic stress tolerance in plants. Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol: Volume 2. pp. 97−133. doi: 10.1007/978-3-030-15175-1_6

[104]

Li A. 2024. Role of diazotrophic bacteria in promoting sugarcane growth and yield. Field Crop 13:7

[105]

Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K. 2021. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech 11:267

doi: 10.1007/s13205-021-02833-5
[106]

Pessoa RS, Silva CA, Moretti BS, Furtini Neto AE, Inda AV, et al. 2015. Solubilization of potassium from alternative rocks by humic and citric acids and coffee husk. Ciência e Agrotecnologia 39:553−64

doi: 10.1590/s1413-70542015000600002
[107]

Pathak DV, Kumar M, Rani K. 2017. Biofertilizer application in horticultural crops. In Microorganisms for Green Revolution, eds. Panpatte D, Jhala Y, Vyas R, Shelat H. Singapore: Springer. pp. 215−27. doi: 10.1007/978-981-10-6241-4_11

[108]

Mao HK, Hu Q, Yang L, Liu J, Kim DY, et al. 2017. When water meets iron at Earth's core–mantle boundary. National Science Review 4:870−78

doi: 10.1093/nsr/nwx109
[109]

Sarikhani E, Sagova-Mareckova M, Omelka M, Kopecky J. 2017. The effect of peat and iron supplements on the severity of potato common scab and bacterial community in tuberosphere soil. FEMS Microbiology Ecology 93:fiw206

doi: 10.1093/femsec/fiw206
[110]

Rahimi S, Talebi M, Baninasab B, Gholami M, Zarei M, Shariatmadari H. 2020. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings. Plant Physiology and Biochemistry 155:406−15

doi: 10.1016/j.plaphy.2020.07.045
[111]

Shao Z, Gu S, Zhang X, Xue J, Yan T, et al. 2024. Siderophore interactions drive the ability of Pseudomonas spp. consortia to protect tomato against Ralstonia solanacearum. Horticulture Research 11:uhae186

doi: 10.1093/hr/uhae186
[112]

Romero F, Labouyrie M, Orgiazzi A, Ballabio C, Panagos P, et al. 2024. Soil health is associated with higher primary productivity across Europe. Nature Ecology & Evolution 8:1847−55

doi: 10.1038/s41559-024-02511-8
[113]

Toor GS, Yang YY, Das S, Dorsey S, Felton G. 2021. Soil health in agricultural ecosystems: current status and future perspectives. Advances in Agronomy 168:157−201

doi: 10.1016/bs.agron.2021.02.004
[114]

Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, et al. 2022. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research 214:113821

doi: 10.1016/j.envres.2022.113821
[115]

Toledo Cabrera B. 2021. Effect of Rhizobium inoculation on tomato (Solanum lycopersicum L.) yield in protected crops. Biology and Life Sciences Forum 3:52

doi: 10.3390/IECAG2021-09993
[116]

Langendries S, Goormachtig S. 2021. Paenibacillus polymyxa, a Jack of all trades. Environmental Microbiology 23:5659−69

doi: 10.1111/1462-2920.15450
[117]

Wu Q, Yang L, Chen Y, Liang H, Liu M, et al. 2025. Acid phosphatase-driven advancements in peanut growth and microbial community dynamics in phosphorus-limited soils. Journal of Soil Science and Plant Nutrition 25:83−101

doi: 10.1007/s42729-024-02114-z
[118]

Marjanović J, Zubairu AM, Varga S, Turdalieva S, Ramos-Diaz F, et al. 2024. Demonstrating agroecological practices in potato production with conservation tillage and Pseudomonas spp., Azotobacter spp., Bacillus spp. bacterial inoculants—evidence from hungary. Agronomy 14:2979

doi: 10.3390/agronomy14122979
[119]

Ahamad L, Siddiqui ZA. 2021. Effects of Pseudomonas putida and Rhizophagus irregularis alone and in combination on growth, chlorophyll, carotenoid content and disease complex of carrot. Indian Phytopathology 74:763−73

doi: 10.1007/s42360-021-00346-y
[120]

Hill Y, Colombi E, Bonello E, Haskett T, Ramsay J, et al. 2021. Evolution of diverse effective N2-fixing microsymbionts of Cicer arietinum following horizontal transfer of the Mesorhizobium ciceri CC1192 symbiosis integrative and conjugative element. Applied and Environmental Microbiology 87:e02558-20

doi: 10.1128/AEM.02558-20
[121]

Akhtar N, Iqbal A, Qureshi M, Khan KH. 2010. Effect of phosphate solubilizing bacteria on the phosphorus availability and yield of cotton (Gossypium hirsutum). Journal of Scientific Research 40:15−24

[122]

Biswas D, Chakraborty AK, Srivastava V, Mandal A. 2024. Plant Growth Promoting Rhizobacteria (PGPR): reports on their colonization, beneficial activities, and use as bioinoculant. Advances in Agriculture 2024:8173024

doi: 10.1155/2024/8173024
[123]

Khan M, Khan T, Tabassum B, Hashim M. 2024. Microbiome-driven soil fertility: understanding symbiotic relationships. In Progress in Soil Microbiome Research, ed. Parray JA. Cham: Springer. pp. 77-115. doi: 10.1007/978-3-031-71487-0_4

[124]

Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman MEH. 2022. Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture 12:781

doi: 10.3390/agriculture12060781
[125]

Silveira RD, Veras FF, Hernandes KC, Bach E, Passaglia LMP, et al. 2024. Genomic analysis reveals genes that encode the synthesis of volatile compounds by a Bacillus velezensis-based biofungicide used in the treatment of grapes to control Aspergillus carbonarius. International Journal of Food Microbiology 415:110644

doi: 10.1016/j.ijfoodmicro.2024.110644
[126]

Valdovinos-Nava W, Chan-Cupul W, Hernández-Ortega HA, Ruíz-Sánchez E. 2020. Effects of biological and mineral fertilization on the growth, nutrition, and yield of Capsicum chinense under greenhouse conditions. Journal of Plant Nutrition 43:2286−98

doi: 10.1080/01904167.2020.1771586
[127]

EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, et al. 2022. Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy 4:765068

doi: 10.3389/fagro.2022.765068
[128]

Poveda J, González-Andrés F. 2021. Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology 105:8629−45

doi: 10.1007/s00253-021-11492-8
[129]

Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, et al. 2022. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry 172:56−69

doi: 10.1016/j.plaphy.2022.01.001
[130]

Park J, Lee Y, Martinoia E, Geisler M. 2017. Plant hormone transporters: what we know and what we would like to know. BMC Biology 15:93

doi: 10.1186/s12915-017-0443-x
[131]

Manna M, Rengasamy B, Sinha AK. 2024. Nutrient and water availability influence rice physiology, root architecture and ionomic balance via auxin signalling. Plant, Cell & Environment 48:2691−705

doi: 10.1111/pce.15171
[132]

Bao D, Chang S, Li X, Qi Y. 2024. Advances in the study of auxin early response genes: Aux/IAA, GH3, and SAUR. The Crop Journal 12:964−78

doi: 10.1016/j.cj.2024.06.011
[133]

Rico‐Jiménez M, Muñoz‐Mira S, Lomas‐Martínez C, Krell T, Matilla MA. 2023. Regulation of indole‐3‐acetic acid biosynthesis and consequences of auxin production deficiency in Serratia plymuthica. Microbial Biotechnology 16:1671−89

doi: 10.1111/1751-7915.14296
[134]

Bigatton ED, Castillejo MA, Ayoub, Baldessari JJ, Bruno M, et al. 2024. Plant Growth Promoting Rhizobacteria (PGPR): impact on peanut flowering, seed physical quality, and yield determination (Arachis hypogaea L.). Industrial Crops and Products 219:119024

doi: 10.1016/j.indcrop.2024.119024
[135]

Zhao T, Deng X, Xiao Q, Han Y, Zhu S, et al. 2020. IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products 155:112788

doi: 10.1016/j.indcrop.2020.112788
[136]

Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, et al. 2019. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Frontiers in Plant Science 10:1368

doi: 10.3389/fpls.2019.01368
[137]

Ravelo-Ortega G, Raya-González J, López-Bucio J. 2023. Compounds from rhizosphere microbes that promote plant growth. Current Opinion in Plant Biology 73:102336

doi: 10.1016/j.pbi.2023.102336
[138]

Li H, Wang JQ, Liu Q. 2020. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. Journal of Plant Physiology 253:153265

doi: 10.1016/j.jplph.2020.153265
[139]

Gupta R, Elkabetz D, Leibman-Markus M, Sayas T, Schneider A, et al. 2022. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. The ISME journal 16:122−37

doi: 10.1038/s41396-021-01060-3
[140]

Feng L, Li Q, Zhou D, Jia M, Liu Z, et al. 2024. B. subtilis CNBG‐PGPR‐1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato. The Plant Journal 117:193−211

doi: 10.1111/tpj.16489
[141]

Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, et al. 2018. Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology 9:2992

doi: 10.3389/fmicb.2018.02992