| [1] |
Ma Y, Hu J, Wu W, Duan Y, Fan C, et al. 2022. Research progress on chemical constituents and pharmacological effects of Radix astragali. Acta Chinese Medicine and Pharmacology 50(4):92−95 doi: 10.19664/j.cnki.1002-2392.220092 |
| [2] |
Tang W, Li G, Jin X. 2015. Comparison of the effective components on different harvesting periods of Radix astragali. Northern Horticulture 39(7):138−41 doi: 10.11937/bfyy.201507040 |
| [3] |
Zhu Y, Ouyang W, Lu B, Lu S, Feng S, et al. 2024. Rehydration characteristics of dried icefish (Salangidae) with different drying methods by low-field nuclear magnetic resonance and magnetic resonance imaging. Journal of Food Process Engineering 47(1):e14511 doi: 10.1111/jfpe.14511 |
| [4] |
Chatzilia T, Kaderides K, Goula AM. 2023. Drying of peaches by a combination of convective and microwave methods. Journal of Food Process Engineering 46(4):e14296 doi: 10.1111/jfpe.14296 |
| [5] |
Martynenko A, Kudra T, Yue J. 2017. Multipin EHD dryer: effect of electrode geometry on charge and mass transfer. Drying Technology 35(16):1970−80 doi: 10.1080/07373937.2017.1285311 |
| [6] |
Mahiuddin M, Khan MIH, Kumar C, Rahman MM, Karim MA. 2018. Shrinkage of food materials during drying: current status and challenges. Comprehensive Reviews in Food Science and Food Safety 17(5):1113−26 doi: 10.1111/1541-4337.12375 |
| [7] |
Zhang X, Zhong C, Mujumdar A, Yang X, Deng L, et al. 2019. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering 241:51−57 doi: 10.1016/j.jfoodeng.2018.08.002 |
| [8] |
Ni JB, Zhang JS, Bhandari B, Xiao HW, Ding CJ, et al. 2022. Effects of dielectric barrier discharge (DBD) plasma on the drying kinetics, color, phenolic compounds, energy consumption and microstructure of lotus pollen. Drying Technology 40(15):3100−14 doi: 10.1080/07373937.2022.2048306 |
| [9] |
Zhou YH, Vidyarthi SK, Zhong CS, Zheng ZA, An Y, et al. 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT 134:110173 doi: 10.1016/j.lwt.2020.110173 |
| [10] |
Zielinska S, Staniszewska I, Liu ZL, Zielinska D, Pan Z, et al. 2023. Effect of cold atmospheric pressure plasma pretreatment on the drying kinetics, physicochemical properties and selected bioactive compounds of okra pods subjected to hot air impingement drying. Drying Technology 41(15):2405−17 doi: 10.1080/07373937.2023.2251050 |
| [11] |
Chen Y, Dong Y, Tian Y, Chang Z. 2023. Study on the effect of plasma drying and sterilization of pepper seeds. Drying Technology 41(10):1583−94 doi: 10.1080/07373937.2023.2167826 |
| [12] |
Mirzaei-Baktash H, Hamdami N, Torabi P, Fallah-Joshaqani S, Dalvi-Isfahan M. 2022. Impact of different pretreatments on drying kinetics and quality of button mushroom slices dried by hot-air or electrohydrodynamic drying. LWT 15:112894 doi: 10.1016/j.lwt.2021.112894 |
| [13] |
Jahanbakhshi A, Yeganeh R, Momeny M. 2020. Influence of ultrasound pre-treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. Journal of Food Processing and Preservation 44(10):e14818 doi: 10.1111/jfpp.14818 |
| [14] |
Kaveh M, Karami H, Jahanbakhshi A. 2020. Investigation of mass transfer, thermodynamics, and greenhouse gases properties in pennyroyal drying. Journal of Food Process Engineering 43(8):e13446 doi: 10.1111/jfpe.13446 |
| [15] |
Taghian Dinani S, Havet M, Hamdami N, Shahedi M. 2014. Drying of mushroom slices using hot air combined with an electrohydrodynamic (EHD) drying system. Drying Technology 32(5):597−605 doi: 10.1080/07373937.2013.851086 |
| [16] |
Zhong C, Martynenko A, Wells P, Adamiak K. 2019. Numerical investigation of the multi-pin electrohydrodynamic dryer: Effect of cross-flow air stream. Drying Technology 37(13):1665−77 doi: 10.1080/07373937.2018.1531291 |
| [17] |
Miraei Ashtiani SH, Rafiee M, Mohebi Morad M, Khojastehpour M, Khani MR, et al. 2020. Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies 63:102381 doi: 10.1016/j.ifset.2020.102381 |
| [18] |
Li L, Zhang M, Zhou L. 2021. A promising pulse-spouted microwave freeze drying method used for Chinese yam cubes dehydration: Quality, energy consumption, and uniformity. Drying Technology 39(2):148−61 doi: 10.1080/07373937.2019.1624564 |
| [19] |
Elmizadeh A, Shahedi M, Hamdami N. 2018. Quality assessment of electrohydrodynamic and hot-air drying of quince slice. Industrial Crops and Products 116:35−40 doi: 10.1016/j.indcrop.2018.02.048 |
| [20] |
Khraisheh MAM, McMinn WAM, Magee TRA. 2004. Quality and structural changes in starchy foods during microwave and convective drying. Food Research International 37(5):497−503 doi: 10.1016/j.foodres.2003.11.010 |
| [21] |
Yu F, Wan N, Li Y, Wang X, Wu Z, et al. 2021. Analysis on change rule and mechanism in physical and chemical properties of Chinese herbal medicines during drying. Chinese Traditional and Herbal Drugs 52(7):2144−53 doi: 10.7501/j.issn.0253-2670.2021.07.031 |
| [22] |
An NN, Sun WH, Li, BZ, Wang Y, Shang N, et al. 2022. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry 373:131412 doi: 10.1016/j.foodchem.2021.131412 |
| [23] |
Chen Q, Li Z, Bi J, Zhou L, Yi J, et al. 2017. Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT 80:178−84 doi: 10.1016/j.lwt.2017.02.017 |
| [24] |
Ashtiani SM, Aghkhani MH, Feizy J, Martynenko A. 2023. Effect of cold plasma pretreatment coupled with osmotic dehydration on drying kinetics and quality of mushroom (Agaricus bisporus). Food and Bioprocess Technology 16:2854−76 doi: 10.1007/s11947-023-03096-z |
| [25] |
Martynenko A, Bashkir I, Kudra T. 2021. Electrically enhanced drying of white champignons. Drying Technology 39(2):234−44 doi: 10.1080/07373937.2019.1670672 |
| [26] |
Singh B, Suri K, Shevkani K, Kaur A, Kaur A, et al. 2018. Enzymatic browning of fruit and vegetables: a review. In Enzymes in Food Technology, ed. Kuddus M. Singapore: Springer Press. pp. 63–78. doi: 10.1007/978-981-13-1933-4_4 |
| [27] |
Huang CC, Wu JSB, Wu JS, Ting Y. 2019. Effect of novel atmospheric-pressure jet pretreatment on the drying kinetics and quality of white grapes. Journal of the Science of Food and Agriculture 99(11):5102−11 doi: 10.1002/jsfa.9754 |
| [28] |
Özbek HN. 2021. Radio frequency-assisted hot air drying of carrots for the production of carrot powder: kinetics and product quality. LWT 152:112332 doi: 10.1016/j.lwt.2021.112332 |
| [29] |
Tabibian SA, Labbafi M, Askari GH, Rezaeinezhad AR, Ghomi H. 2020. Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). Journal of Food Engineering 270:109766 doi: 10.1016/j.jfoodeng.2019.109766 |
| [30] |
Truong T, Truong V, Shu F, Bhandari B. 2019. Changes in physicochemical properties of rice in response to high-temperature fluidized bed drying and tempering. Drying Technology 37(3):331−40 doi: 10.1080/07373937.2018.1452031 |
| [31] |
Shi MH, Wang X. 2010. Investigation on moisture transfer mechanism in porous media during rapid drying process. Drying Technology 22(1−2):111−22 doi: 10.1081/DRT-120028222 |
| [32] |
Karim N, Shishir MRI. Bao T, Chen W. 2021. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. Journal of the Science of Food and Agriculture 101:6271−80 doi: 10.1002/jsfa.11296 |
| [33] |
Zhang Z, Yu J, Cheng P, Wang S, Hang F, et al. 2022. Effect of different process parameters and ultrasonic treatment during solid osmotic dehydration of jasmine for extraction of flavoured syrup on the mass transfer kinetics and quality attributes. Food and Bioprocess Technology 15:1055−72 doi: 10.1007/s11947-022-02787-3 |
| [34] |
Bai Y, Qu M, Luan Z, Li X, Yang Y. 2013. Electrohydrodynamic drying of sea cucumber (Stichopus japonicus). LWT - Food Science and Technology 54(2):570−76 doi: 10.1016/j.lwt.2013.06.026 |
| [35] |
Luan Z, Zhang D, Liu B, Wei Y, Wang Y. 2019. Effects of astragaloside on VEGF/VEGFR2 signaling pathway in mice with pulmonary fibrosis. Lishizhen Medicine And Materia Medica Research 30(7):1611−13 doi: 10.3969/j.issn.1008-0805.2019.07.023 |
| [36] |
Jiang G, He S, Liu S. 2013. Effect of different drying methods on the quality Smilax glabra Roxb. Journal of Guangdong Pharmaceutical University 29(3):258−61 doi: 10.3969/j.issn.1006-8783.2013.03.009 |
| [37] |
Ahmedou SO, Rouaud O, Havet M. 2009. Assessment of the Electrohydrodynamic Drying Process. Food and Bioprocess Technology 2:240−247 doi: 10.1007/s11947-008-0078-6 |
| [38] |
Thuwapanichayanan R, Prachayawarakorn S, Soponronnarit S. 2008. Drying characteristics and quality of banana foam mat. Journal of Food Engineering 86(4):573−83 doi: 10.1016/j.jfoodeng.2007.11.008 |
| [39] |
Wang L, Xu B, Wei B, Zeng R. 2018. Low frequency ultrasound pretreatment of carrot slices: effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics - Sonochemistry 40:619−28 doi: 10.1016/j.ultsonch.2017.08.005 |