[1]

Peng W, Liu YJ, Wu N, Sun T, He XY, et al. 2015. Areca catechu L. (Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Ethnopharmacology 164:340−56

doi: 10.1016/j.jep.2015.02.010
[2]

Oliveira NG, Ramos DL, Dinis-Oliveira RJ. 2021. Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: an updated review. Archives of Toxicology 95:375−93

doi: 10.1007/s00204-020-02926-9
[3]

Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. 2016. The pharmacology, toxicology and potential applications of arecoline: a review. Pharmaceutical Biology 54:2753−2760

doi: 10.3109/13880209.2016.1160251
[4]

Mei F, Meng K, Gu Z, Yun Y, Zhang W, et al. 2021. Arecanut (Areca catechu L.) seed polyphenol-ameliorated osteoporosis by altering gut microbiome via LYZ and the immune system in estrogen-deficient rats. Journal of Agricultural and Food Chemistry 69:246−58

doi: 10.1021/acs.jafc.0c06671
[5]

Ji XL, Guo JH, Tian JY, Ma K, Liu YQ. 2023. Research progress on degradation methods and product properties of plant polysaccharides. Journal of Light Industry 38(3):55−62

[6]

Yu Y, Shen M, Song Q, Xie J. 2018. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydrate Polymers 183:91−101

doi: 10.1016/j.carbpol.2017.12.009
[7]

Tang MM, Song F, Wang H, Zhao SL, Chen WJ. 2015. In vitro antioxidant activities and protective effects of polysaccharides from Areca catechu L. seed. Chinese Journal of Tropical Crops 36:1136−41

doi: 10.3969/j.issn.1000-2561.2015.06.020
[8]

Yin MS, Ding HH, Pan FB, Kuang FJ, Ji XL, et al. 2021. Optimization of ultrasonic-assisted aqueous awo-phase extraction of Areca catechu L. polysaccharide using response surface design and assessment of its antioxidant activities. Food Research and Development 42(19):163−70

doi: 10.12161/j.issn.1005-6521.2021.19.023
[9]

Tang MM, Chen H, Li R. 2019. Optimization of ultrasound-assisted extraction of areca nut polysaccharides based on response surface methodology and anti-inflammatory activity. Anhui Agricultural Science Bulletin 25:21−24,74

doi: 10.3969/j.issn.1007-7731.2019.09.009
[10]

Hu M, Peng W, Liu Y, Wu N, Zhao C, et al. 2017. Optimum extraction of polysaccharide from areca catechu using response surface methodology and its antioxidant activity. Journal of Food Processing and Preservation 41:e12798

doi: 10.1111/jfpp.12798
[11]

Ji X, Guo J, Pan F, Kuang F, Chen H, et al. 2022. Structural elucidation and antioxidant activities of a neutral polysaccharide from arecanut (Areca catechu L.). Frontiers in Nutrition 9:853115

doi: 10.3389/fnut.2022.853115
[12]

Geng L, Zhang Q, Li Q, Zhang Q, Wang C, et al. 2024. Fucoidan from the cell wall of Silvetia siliquosa with immunomodulatory effect on RAW 264.7 cells. Carbohydrate Polymers 332:121883

doi: 10.1016/j.carbpol.2024.121883
[13]

Li L, Qiu Z, Dong H, Ma C, Qiao Y, et al. 2021. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: a comparison. International Journal of Biological Macromolecules 182:187−196

doi: 10.1016/j.ijbiomac.2021.03.177
[14]

Ji X, Cheng Y, Tian J, Zhang S, Jing Y, et al. 2021. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chemical and Biological Technologies in Agriculture 8:54

doi: 10.1186/s40538-021-00255-2
[15]

Ji X, Peng Q, Yuan Y, Shen J, Xie X, et al. 2017. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): a review. Food Chemistry 227:349−357

doi: 10.1016/j.foodchem.2017.01.074
[16]

Wang L, Zhao Z, Zhao H, Liu M, Lin C, et al. 2022. Pectin polysaccharide from Flos Magnoliae (Xin Yi, Magnolia biondii Pamp. flower buds): Hot-compressed water extraction, purification and partial structural characterization. Food Hydrocolloids 122:107061

doi: 10.1016/j.foodhyd.2021.107061
[17]

Chen Z, Zhao Y, Zhang M, Yang X, Yue P, et al. 2020. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydrate Polymers 227:115362

doi: 10.1016/j.carbpol.2019.115362
[18]

Chen H, Zeng J, Wang B, Cheng Z, Xu J, et al. 2021. Structural characterization and antioxidant activities of bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers 266:118149

doi: 10.1016/j.carbpol.2021.118149
[19]

Ji X, Hou C, Yan Y, Shi M, Liu Y. 2020. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. International Journal of Biological Macromolecules 149:1008−18

doi: 10.1016/j.ijbiomac.2020.02.018
[20]

Li Z, An L, Zhang S, Shi Z, Bao J, et al. 2021. Structural elucidation and immunomodulatory evaluation of a polysaccharide from Stevia rebaudiana leaves. Food Chemistry 364:130310

doi: 10.1016/j.foodchem.2021.130310
[21]

Wang N, Jia G, Wang X, Liu Y, Li Z, et al. 2021. Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydrate Polymers 256:117514

doi: 10.1016/j.carbpol.2020.117514
[22]

Lin X, Ji X, Wang M, Yin S, Peng Q. 2019. An alkali-extracted polysaccharide from Zizyphus jujuba cv. Muzao: structural characterizations and antioxidant activities. International Journal of Biological Macromolecules 136:607−15

doi: 10.1016/j.ijbiomac.2019.06.117
[23]

Liu W, Xiao K, Ren L, Sui Y, Chen J, et al. 2020. Leukemia cells apoptosis by a newly discovered heterogeneous polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydrate Polymers 241:116279

doi: 10.1016/j.carbpol.2020.116279
[24]

Ayyash M, Abu-Jdayil B, Olaimat A, Esposito G, Itsaranuwat P, et al. 2020. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydrate Polymers 229:115462

doi: 10.1016/j.carbpol.2019.115462
[25]

Huo J, Wu J, Zhao M, Sun W, Sun J, et al. 2020. Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF-α expression. Food Chemistry 330:127257

doi: 10.1016/j.foodchem.2020.127257
[26]

Shi Y, Ye YF, Zhang BW, Liu Y, Wang JH. 2021. Purification, structural characterization and immunostimulatory activity of polysaccharides from Umbilicaria esculenta. International Journal of Biological Macromolecules 181:743−751

doi: 10.1016/j.ijbiomac.2021.03.176
[27]

Li F, Wei Y, Liang L, Huang L, Yu G, et al. 2021. A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers 251:117090

doi: 10.1016/j.carbpol.2020.117090
[28]

Wang J, Hu S, Nie S, Yu Q, Xie M. 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity 2016:5692852

doi: 10.1155/2016/5692852
[29]

Kawai T, Akira S. 2007. TLR signaling. Seminars in Immunology 19:24−32

doi: 10.1016/j.smim.2006.12.004
[30]

Moresco EM, LaVine D, Beutler B. 2011. Toll-like receptors. Current Biology 21:R488−R493

doi: 10.1016/j.cub.2011.05.039
[31]

Kawai T, Akira S. 2007. Signaling to NF-κB by Toll-like receptors. Trends in Molecular Medicine 13:460−469

doi: 10.1016/j.molmed.2007.09.002
[32]

Sun H, Zhang J, Chen F, Chen X, Zhou Z, et al. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydrate Polymers 121:388−402

doi: 10.1016/j.carbpol.2014.12.023
[33]

Sheng K, Wang C, Chen B, Kang M, Wang M, et al. 2021. Recent advances in polysaccharides from Lentinus edodes (Berk.): isolation, structures and bioactivities. Food Chemistry 358:129883

doi: 10.1016/j.foodchem.2021.129883
[34]

Wang M, Zhao S, Zhu P, Nie C, Ma S, et al. 2018. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia. International Journal of Biological Macromolecules 107:882−890

doi: 10.1016/j.ijbiomac.2017.09.062