[1]

Sen A, Caiazza F. 2013. Oocyte maturation: a story of arrest and release. Frontiers in Bioscience 5:451−77

doi: 10.2741/s383
[2]

Mao L, Lou H, Lou Y, Wang N, Jin F. 2014. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reproductive BioMedicine Onlinee 28:284−99

doi: 10.1016/j.rbmo.2013.10.016
[3]

Chen W, Zhao H, Li Y. 2023. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy 8:333

doi: 10.1038/s41392-023-01547-9
[4]

Chan DC. 2006. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241−52

doi: 10.1016/j.cell.2006.06.010
[5]

Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, et al. 2010. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America 107:378−83

doi: 10.1073/pnas.0911187107
[6]

Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. 2021. The role of mitochondria in oocyte maturation. Cells 10:2484

doi: 10.3390/cells10092484
[7]

Udagawa O. 2024. Oocyte health and quality: implication of mitochondria-related organelle interactions. Results and Problems in Cell Differentiation 73:25−42

doi: 10.1007/978-3-031-62036-2_2
[8]

Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, et al. 2023. Mitochondrial transfer into human oocytes improved embryo quality and clinical outcomes in recurrent pregnancy failure cases. International Journal of Molecular Sciences 24:2738

doi: 10.3390/ijms24032738
[9]

Wang L, Tang J, Wang L, Tan F, Song H, et al. 2021. Oxidative stress in oocyte aging and female reproduction. Journal of Cellular Physiology 236:7966−83

doi: 10.1002/jcp.30468
[10]

Martin JH, Nixon B, Cafe SL, Aitken RJ, Bromfield EG, et al. 2022. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress and in vitro ageing of the post-ovulatory oocyte: an update on recent advances in the field. Reproduction 164:F109−F124

doi: 10.1530/REP-22-0206
[11]

Soto-Heras S, Paramio MT. 2020. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science 132:342−50

doi: 10.1016/j.rvsc.2020.07.013
[12]

Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, et al. 2023. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Frontiers in Endocrinology 14:1172481

doi: 10.3389/fendo.2023.1172481
[13]

Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, et al. 2020. Autophagy in female fertility: a role in oxidative stress and aging. Antioxidants & Redox Signaling 32:550−68

doi: 10.1089/ars.2019.7986
[14]

Ma LN, Ma K, Fan XD, Zhang H, Li JN, et al. 2023. Research progress on the biological effects of HIF-1α on follicle development and ovulation. Acta Physiologica Sinica 75:727−35

doi: 10.13294/j.aps.2023.0068
[15]

Ke Q, Costa M. 2006. Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology 70:1469−80

doi: 10.1124/mol.106.027029
[16]

Kelly B, O'Neill LA. 2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research 25:771−84

doi: 10.1038/cr.2015.68
[17]

Lv C, Wang S, Lin L, Wang C, Zeng K, et al. 2021. USP14 maintains HIF1-α stabilization via its deubiquitination activity in hepatocellular carcinoma. Cell Death & Disease 12:803

doi: 10.1038/s41419-021-04089-6
[18]

Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, et al. 2024. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nature Metabolism 6:2138−56

doi: 10.1038/s42255-024-01150-4
[19]

Masoud GN, Li W. 2015. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B 5:378−89

doi: 10.1016/j.apsb.2015.05.007
[20]

Li C, Zhou J, Liu Z, Zhou J, Yao W, et al. 2020. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1α-PINK1-Parkin pathway. The FASEB Journal 34:3631−45

doi: 10.1096/fj.201901808RRR
[21]

Zhou J, Yao W, Li C, Wu W, Li Q, Liu H. 2017. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death & Disease 8:e3001

doi: 10.1038/cddis.2017.371
[22]

Wang A, Li XY, Xiong Y, Tang CL, Xie Y. 2024. Progress of HIF-1α and HIF-PHI in vascular calcification of chronic kidney disease. Journal of Guangxi Medical University 41(8):1200−05

doi: 10.16190/j.cnki.45-1211/r.2024.08.014
[23]

Kubaichuk K, Kietzmann T. 2019. Involvement of E3 ligases and deubiquitinases in the control of HIF-α subunit abundance. Cells 8:598

doi: 10.3390/cells8060598
[24]

He H, Zhang H, Pan Y, Zhang T, Yang S, et al. 2022. Low oxygen concentration improves yak oocyte maturation and inhibits apoptosis through HIF-1 and VEGF. Reproduction in Domestic Animals 57:381−92

doi: 10.1111/rda.14076
[25]

Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F. 2009. The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Research Reviews 62:99−108

doi: 10.1016/j.brainresrev.2009.09.006
[26]

Lee P, Chandel NS, Simon MC. 2020. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology 21:268−83

doi: 10.1038/s41580-020-0227-y
[27]

Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. 2021. Upregulation of COX4-2 via HIF-1α in mitochondrial COX4-1 deficiency. Cells 10:452

doi: 10.3390/cells10020452
[28]

Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, et al. 2020. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biology 36:101671

doi: 10.1016/j.redox.2020.101671
[29]

Hu J, Yang B, Tao Z, Chen J, Zhang X, et al. 2025. The role of HIF-1α/BNIP3/mitophagy in acrylonitrile-induced neuronal death in HT22 cells and mice: A potential neuroprotection target. Chemico-Biological Interactions 406:111327

doi: 10.1016/j.cbi.2024.111327
[30]

Wang S, Tan J, Miao Y, Zhang Q. 2022. Mitochondrial dynamics, mitophagy, and mitochondria-endoplasmic reticulum contact sites crosstalk under hypoxia. Frontiers in Cell and Developmental Biology 10:848214

doi: 10.3389/fcell.2022.848214
[31]

Huang X, Zhao L, Peng R. 2022. Hypoxia-inducible factor 1 and mitochondria: an intimate connection. Biomolecules 13:50

doi: 10.3390/biom13010050
[32]

Tong Z, Du X, Zhou Y, Jing F, Ma J, et al. 2024. Drp1-mediated mitochondrial fission promotes pulmonary fibrosis progression through the regulation of lipid metabolic reprogramming by ROS/HIF-1α. Cellular Signalling 117:111075

doi: 10.1016/j.cellsig.2024.111075
[33]

Wu L, Xi Y, Kong Q. 2020. Dexmedetomidine protects PC12 cells from oxidative damage through regulation of miR-199a/HIF-1α. Artificial Cells, Nanomedicine, and Biotechnology 48:506−14

doi: 10.1080/21691401.2020.1716780
[34]

Sun H, Li X, Chen X, Xiong Y, Cao Y, et al. 2022. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. Journal of Neuroinflammation 19:213

doi: 10.1186/s12974-022-02542-7
[35]

Jiang N, Zhao H, Han Y, Li L, Xiong S, et al. 2020. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Proliferation 53:e12909

doi: 10.1111/cpr.12909
[36]

Yildirim RM, Seli E. 2024. The role of mitochondrial dynamics in oocyte and early embryo development. Seminars in Cell & Developmental Biology 159−160:52−61

doi: 10.1016/j.semcdb.2024.01.007
[37]

Liu Z, Zheng J, Ding T, Chen H, Wan R, et al. 2024. HIF-1α protects nucleus pulposus cells from oxidative stress-induced mitochondrial impairment through PDK-1. Free Radical Biology & Medicine 224:39−49

doi: 10.1016/j.freeradbiomed.2024.08.007
[38]

Bae T, Hallis SP, Kwak MK. 2024. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Experimental & Molecular Medicine 56:501−14

doi: 10.1038/s12276-024-01180-8
[39]

Slot IGM, Schols AMWJ, Vosse BAH, Kelders MCJM, Gosker HR. 2014. Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1α-dependent manner. Cellular Signalling 26:1837−45

doi: 10.1016/j.cellsig.2014.04.016
[40]

Guo H, Yang Y, Lou Y, Zuo Z, Cui H, et al. 2023. Apoptosis and DNA damage mediated by ROS involved in male reproductive toxicity in mice induced by Nickel. Ecotoxicology and Environmental Safety 268:115679

doi: 10.1016/j.ecoenv.2023.115679
[41]

Li Q, Tong Y, Guo J, Liang X, Shao H, et al. 2025. Vitamin D Receptor Regulates Oxidative Stress and Apoptosis Via the HIF-1α/HO-1 Pathway in Cardiomyocytes. Cell Biochemistry and Biophysics

doi: 10.1007/s12013-025-01681-x
[42]

Lin J, Guo Z, Zheng Z, Hou L, Xu J, et al. 2023. Desferoxamine protects against hemophilic arthropathy through the upregulation of HIF-1α-BNIP3 mediated mitophagy. Life Sciences 312:121172

doi: 10.1016/j.lfs.2022.121172
[43]

Zhang J, Yao M, Xia S, Zeng F, Liu Q. 2025. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cellular & Molecular Biology Letters 30:2

doi: 10.1186/s11658-024-00682-7
[44]

Cao B, Camden AJ, Parnell LA, Mysorekar IU. 2017. Autophagy regulation of physiological and pathological processes in the female reproductive tract. American Journal of Reproductive Immunology 77:e12650

doi: 10.1111/aji.12650
[45]

Wang X, Wu R, Zhai P, Liu Z, Xia R, et al. 2023. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α. Journal of Extracellular Vesicles 12:e12310

doi: 10.1002/jev2.12310
[46]

Oyarzún JE, Lagos J, Vázquez MC, Valls C, De la Fuente C, et al. 2019. Lysosome motility and distribution: Relevance in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1865:1076−87

doi: 10.1016/j.bbadis.2019.03.009