[1]

Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, et al. 2020. Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology 62(9):1270−92

doi: 10.1111/jipb.12932
[2]

Pierik R, Ballaré CL. 2022. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. Molecular Plant 15(11):1825

doi: 10.1016/j.molp.2022.10.011
[3]

Li J, Li G, Gao S, Martinez C, He G, et al. 2010. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. The Plant Cell 22(11):3634−49

doi: 10.1105/tpc.110.075788
[4]

Wang H, Wang H. 2015. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends in Plant Science 20(7):453−61

doi: 10.1016/j.tplants.2015.04.003
[5]

Dai J, Sun J, Peng W, Liao W, Zhou Y, et al. 2022. FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis. Frontiers in Plant Science 13:883654

doi: 10.3389/fpls.2022.883654
[6]

Ma L, Li G. 2018. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Arabidopsis growth and development. Frontiers in Plant Science 9:692

doi: 10.3389/fpls.2018.00692
[7]

Du J, Zhang L, Ge X, Xiang X, Cao D, et al. 2021. Genome-wide identification and characterization of the FAR1/FHY3 Family in Populus trichocarpa Torr. & Gray and expression analysis in light response. Forests 12(10):1385

doi: 10.3390/f12101385
[8]

Lin R, Wang H. 2004. Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiology 136(4):4010−22

doi: 10.1104/pp.104.052191
[9]

Xie Y, Zhou Q, Zhao Y, et al. 2020. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Molecular Plant 13(3):483−98

doi: 10.1016/j.molp.2020.01.013
[10]

Xie Y, Liu Y, Ma M, Zhou Q, Zhao Y, et al. 2020. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nature Communications 11(1):1955

doi: 10.1038/s41467-020-15893-7
[11]

Zhang K, Lin C, Chen B, Lin Y, Su H, et al. 2024. A light responsive transcription factor CsbHLH89 positively regulates anthocyanidin synthesis in tea (Camellia sinensis). Scientia Horticulturae 327:112784

doi: 10.1016/j.scienta.2023.112784
[12]

Li C, Jiao M, Zhao X, Ma J, Cui Y, et al. 2024. bZIP transcription factor responds to changes in light quality and affects saponins synthesis in Eleutherococcus senticosus. International Journal of Biological Macromolecules 279:135273

doi: 10.1016/j.ijbiomac.2024.135273
[13]

Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, et al. 2006. Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry 41(5):1179−1185

doi: 10.1016/j.procbio.2005.12.015
[14]

Tang H, Jing D, Liu C, Xie X, Zhang L, et al. 2024. Genome-wide identification and expression analyses of the FAR1/FHY3 gene family provide insight into inflorescence development in maize. Current Issues in Molecular Biology 46(1):430−49

doi: 10.3390/cimb46010027
[15]

Jiang Y, Zeng Z, He G, Liu M, Liu C, et al. 2024. Genome-wide identification and integrated analysis of the FAR1/FHY3 gene family and genes expression analysis under methyl jasmonate treatment in Panax ginseng C. A. Mey. BMC Plant Biology 24(1):549

doi: 10.1186/s12870-024-05239-6
[16]

Zhao X, Zhang J, Dong J, Kou X, Cui Y, et al. 2024. Identification and functional analysis of DNA methylation-related enzyme gene family in Eleutherococcus senticosus. Industrial Crops and Products 213:118412

doi: 10.1016/j.indcrop.2024.118412
[17]

Dong J, Zhao X, Song X, Wang S, Zhao X, et al. 2024. Identification of Eleutherococcus senticosus NAC transcription factors and their mechanisms in mediating DNA methylation of EsFPS, EsSS, and EsSE promoters to regulate saponin synthesis. BMC Genomics 2024;25(1):536

[18]

Todorova V, Ivanov K, Delattre C, Nalbantova V, Karcheva-Bahchevanska D, et al. 2021. Plant adaptogens-history and future perspectives. Nutrients 13(8):2861

doi: 10.3390/nu13082861
[19]

Wang X, Dai Z, Fang JS. 2022. Research progress of Acanthopanax senticosus in prevention and treatment of neurodegenerative diseases. China Journal of Chinese Materia Medica] 47(16):4314−21

doi: 10.19540/j.cnki.cjcmm.20220307.701
[20]

Wang Z, Guo H, Zhang Y, Lin L, Cui M, et al. 2019. DNA methylation of farnesyl pyrophosphate synthase, squalene synthase, and squalene epoxidase gene promoters and effect on the saponin content of Eleutherococcus senticosus. Forests 10(12):1053

doi: 10.3390/f10121053
[21]

Guo S, Zhang S, Jia L, Xu M, Wang Z. 2020. Root growth of Eleuthero (Eleutherococcus senticosus [Rupr. & Maxim.] Maxim.) seedlings cultured with chitosan oligosaccharide addition under different light spectra. Notulae Botanicae Horti Agrobotanici Cluj-napoca 48:626−35

doi: 10.15835/nbha48211634
[22]

Guo S, Wang H, Sui Y, Liu X, Tan L. 2022. Bioactive extracts and association with C and N in Eleutherococcus senticosus subjected to chitosan nanoparticles in contrasting light spectra. PLoS One 17(12):e0277233

doi: 10.1371/journal.pone.0277233
[23]

Yang Z, Chen S, Wang S, Hu Y, Zhang G, et al. 2021. Chromosomal-scale genome assembly of Eleutherococcus senticosus provides insights into chromosome evolution in Araliaceae. Molecular Ecology Resources 21(7):2204−20

doi: 10.1111/1755-0998.13403
[24]

Jiao MY, Zhang J, Cheng WW, Song X, Long YH, et al. 2023. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress. 3 Biotech 13(7):259

doi: 10.1007/s13205-023-03678-w
[25]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[26]

Wang Y, Zhang H, Ri HC, An Z, Wang X, et al. 2022. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nature Communications 13(1):2224

doi: 10.1038/s41467-022-29908-y
[27]

Bos DH, Posada D. 2005. Using models of nucleotide evolution to build phylogenetic trees. Developmental & Comparative Immunology 229(3):211−27

doi: 10.1016/j.dci.2004.07.007
[28]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8):1586−91

doi: 10.1093/molbev/msm088
[29]

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry 26(16):1701−18

doi: 10.1002/jcc.20291
[30]

Kiss PT, Sega M, Baranyai A. 2014. Efficient handling of gaussian charge distributions: An application to polarizable molecular models. Journal of Chemical Theory and Computation 10(12):5513−9

doi: 10.1021/ct5009069
[31]

Aviat F, Levitt A, Stamm B, Maday Y, Ren P, et al. 2017. Truncated conjugate gradient: An optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations. Journal of Chemical Theory and Computation 13(1):180−90

doi: 10.1021/acs.jctc.6b00981
[32]

He Z, Hu Y, Zhang Y, Xie J, Niu Z, et al. 2024. Asiaticoside exerts neuroprotection through targeting NLRP3 inflammasome activation. Phytomedicine 127:155494

doi: 10.1016/j.phymed.2024.155494
[33]

Li X, Li Y, Qiao Y, Lu S, Yao K, et al. 2024. Genome-wide identification and expression analysis of FAR1/FHY3 gene family in Cucumber (Cucumis sativus L. ). Agronomy 14(1):50

[34]

Wang H, Deng XW. 2002. Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. The EMBO Journal 21(6):1339−49

doi: 10.1093/emboj/21.6.1339
[35]

Li G, Siddiqui H, Teng Y, Lin R, Wan XY, et al. 2011. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology 13(5):616−22

doi: 10.1038/ncb2219
[36]

Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, et al. 2014. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412−421

doi: 10.1016/j.cell.2014.06.034
[37]

Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, et al. 2015. Minimum information about a biosynthetic gene cluster. Nature Chemical Biology 11(9):625−631

doi: 10.1038/nchembio.1890
[38]

Wisecaver JH, Slot JC, Rokas A. 2014. The evolution of fungal metabolic pathways. PLoS Genetics 10(12):e1004816

doi: 10.1371/journal.pgen.1004816
[39]

Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, et al. 2014. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346(6213):1084−88

doi: 10.1126/science.1259215
[40]

Williams AM, Carter OG, Forsythe ES, Mendoza HK, Sloan DB. 2022. Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms. Molecular Phylogenetics and Evolution 168:107395

doi: 10.1016/j.ympev.2022.107395
[41]

Huff JT, Zilberman D, Roy SW. 2016. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538:533−36

doi: 10.1038/nature20110
[42]

Liu Z, An C, Zhao Y, Xiao Y, Bao L, et al. 2004. Genome-wide identification and characterization of the CsFHY3/FAR1 gene family and expression analysis under biotic and abiotic stresses in tea plants (Camellia sinensis). Plants 10(3):570

doi: 10.3390/plants10030570
[43]

Chen S, Chen Y, Liang M, Qu S, Shen L, et al. 2023. Genome-wide identification and molecular expression profile analysis of FHY3/FAR1 gene family in walnut (Juglans sigillata L.) development. BMC Genomics 24(1):673

doi: 10.1186/s12864-023-09629-2
[44]

Cai Z, Du W, Liu L, Pan D, Lu L. 2019. Molecular characteristics of the conserved Aspergillus nidulans transcription factor Mac1 and its functions in response to copper starvation. mSphere 4(1):e00670-18

doi: 10.1128/mSphere.00670-18
[45]

Düsterhöft S, Kahveci-Türköz S, Wozniak J, Seifert A, Kasparek P, et al. 2021. The iRhom homology domain is indispensable for ADAM17-mediated TNFα and EGF receptor ligand release. Cellular and Molecular Life Sciences 78(11):5015−40

doi: 10.1007/s00018-021-03845-3
[46]

Lu Q, Liu H, Hong Y, Liang X, Li S, et al. 2022. Genome-wide identification and expression of FAR1 gene family provide insight into pod development in Peanut (Arachis hypogaea). Frontiers in Plant Science 13:893278

doi: 10.3389/fpls.2022.893278
[47]

Tang H, Bowers JE, Wang X, Ming R, Alam M, et al. 2008. Synteny and collinearity in plant genomes. Science 320(5875):486−88

doi: 10.1126/science.1153917
[48]

Chen Q, Yang H, Feng X, Chen Q, Shi S, et al. 2022. Two decades of suspect evidence for adaptive molecular evolution-negative selection confounding positive-selection signals. National Science Review 9(5):nwab217

doi: 10.1093/nsr/nwab217
[49]

Baek K, Lee Y, Nam O, Park S, Sim SJ, et al. 2016. Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii. Biotechnology Journal 11(3):384−392

doi: 10.1002/biot.201500269
[50]

Zhang Z, Ren C, Zou L, Wang Y, Li S, et al. 2018. Characterization of the GATA gene family in Vitis vinifera: genome-wide analysis, expression profiles, and involvement in light and phytohormone response. Genome 61(10):713−23

doi: 10.1139/gen-2018-0042
[51]

Shomali A, Aliniaeifard S, Kamrani YY, Lotfi M, Aghdam MS, et al. 2024. Interplay among photoreceptors determines the strategy of coping with excess light in tomato. The Plant Journal 118(5):1423−38

doi: 10.1111/tpj.16685
[52]

Casal JJ. 2013. Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology 64:403−27

doi: 10.1146/annurev-arplant-050312-120221
[53]

Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, et al. 2007. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302−5

doi: 10.1126/science.1146281
[54]

Liu Y, Ma M, Li G, Yuan L, Xie Y, et al. 2020. Transcription factors FHY3 and FAR1 regulate light-induced CIRCADIAN CLOCK ASSOCIATED1 gene expression in Arabidopsis. The Plant Cell 32(5):1464−78

doi: 10.1105/tpc.19.00981