| [1] |
Youn I, Han S, Jung HJ, Noh SG, Chung HY, et al. 2023. Anti-inflammatory activity of the constituents from the leaves of Perilla frutescens var. acuta. Pharmaceuticals 16(12):1655 doi: 10.3390/ph16121655 |
| [2] |
Wu X, Dong S, Chen H, Guo M, Sun Z, et al. 2023. Perilla frutescens: A traditional medicine and food homologous plant. Chinese Herbal Medicines 15(3):369−75 doi: 10.1016/j.chmed.2023.03.002 |
| [3] |
Hashimoto M, Matsuzaki K, Hossain S, Ito T, Wakatsuki H, et al. 2021. Perilla seed oil enhances cognitive function and mental health in healthy elderly Japanese individuals by enhancing the biological antioxidant potential. Foods 10(5):1130 doi: 10.3390/foods10051130 |
| [4] |
Lin Z, Huang S, LingHu X, Wang Y, Wang B, et al. 2022. Perillaldehyde inhibits bone metastasis and receptor activator of nuclear factor-κB ligand (RANKL) signaling-induced osteoclastogenesis in prostate cancer cell lines. Bioengineered 13(2):2710−19 doi: 10.1080/21655979.2021.2001237 |
| [5] |
Hou T, Netala VR, Zhang H, Xing Y, Li H, et al. 2022. Perilla frutescens: A rich source of pharmacological active compounds. Molecules 27(11):3578 doi: 10.3390/molecules27113578 |
| [6] |
Jo A, Han S, Lim S, Choi C. 2024. Hepatoprotective effects of aqueous extract of Perilla fructescens against alcohol-induced liver injury in mice. Processes 12(7):1404 doi: 10.3390/pr12071404 |
| [7] |
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, et al. 2021. Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances 53:107677 doi: 10.1016/j.biotechadv.2020.107677 |
| [8] |
Chandra S, Chandra R. 2011. Engineering secondary metabolite production in hairy roots. Phytochemistry reviews 10:371−95 doi: 10.1007/s11101-011-9210-8 |
| [9] |
Mirmazloum I, Slavov AK, Marchev AS. 2024. The untapped potential of hairy root cultures and their multiple applications. International Journal of Molecular Sciences 25(23):12682 doi: 10.3390/ijms252312682 |
| [10] |
Zhang XN, Cui G, Jiang X, Huang L. 2012. Establishment and analysis of in vitro culture system for transgenic Salvia miltiorrhiza hairy roots. China Journal of Chinese Materia Medica 37(15):2257−61 doi: 10.4268/cjcmm20121515 |
| [11] |
Wojciechowska M, Owczarek A, Kiss AK, Grąbkowska R, Olszewska MA, et al. 2020. Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds. Journal of biotechnology 318:10−19 doi: 10.1016/j.jbiotec.2020.05.002 |
| [12] |
Sharifzadeh Naeini M, Naghavi MR, Bihamta MR, Sabokdast M, Salehi M. 2021. Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. In Vitro Cellular & Developmental Biology-Plant 57:261−71 doi: 10.1007/s11627-020-10123-7 |
| [13] |
Zhao JL, Zhou LG, Wu JY. 2010. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Applied Microbiology and Biotechnology 87(1):137−44 doi: 10.1007/s00253-010-2443-4 |
| [14] |
Xiao Y, Gao S, Di P, Chen J, Chen W, et al. 2009. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiologia Plantarum 137(1):1−9 doi: 10.1111/j.1399-3054.2009.01257.x |
| [15] |
el Jaber-Vazdekis N, Barres ML, Ravelo AG, Zarate R. 2008. Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. Journal of Natural Products 71(12):2026−31 doi: 10.1021/np800573j |
| [16] |
Dong J, Wan G, Liang Z. 2010. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology 148(2-3):99−104 doi: 10.1016/j.jbiotec.2010.05.009 |
| [17] |
Cheng Y, Hong X, Zhang L, Yang W, Zeng Y, et al. 2023. Transcriptomic analysis provides insight into the regulation mechanism of silver ions (Ag+) and jasmonic acid methyl ester (MeJA) on secondary metabolism in the hairy roots of Salvia miltiorrhiza Bunge (Lamiaceae). Medicinal Plant Biology 2:3 doi: 10.48130/MPB-2023-0003 |
| [18] |
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15(3):473−97 doi: 10.1111/j.1399-3054.1962.tb08052.x |
| [19] |
Adabavazeh F, Pourseyedi S, Nadernejad N, Razavizadeh R, Mozafari H. 2022. Evaluation of synthesized magnetic nanoparticles and salicylic acid effects on improvement of antioxidant properties and essential oils of Calotropis procera hairy roots and seedlings. Plant Cell, Tissue and Organ Culture (PCTOC) 151(1):133−48 doi: 10.1007/s11240-022-02338-w |
| [20] |
Zhao Y, Kong H, Zhang X, Hu X, Wang M. 2019. The effect of Perilla (Perilla frutescens) leaf extracts on the quality of surimi fish balls. Food Science & Nutrition 7(6):2083−90 doi: 10.1002/fsn3.1049 |
| [21] |
Chen J, Xu J, Wang P, Wang Y, Wang Y, et al. 2024. Genome-wide characterization and analysis of the bHLH gene family in Perilla frutescens. International Journal of Molecular Sciences 25(24):13717 doi: 10.3390/ijms252413717 |
| [22] |
Vamenani R, Pakdin-Parizi A, Mortazavi M, Gholami Z. 2020. Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Trachyspermum ammi L. for the efficient production of thymol. Biotechnology and Applied Biochemistry 67(3):389−95 doi: 10.1002/bab.1880 |
| [23] |
Rajashekar J, Kumar V, Veerashree V, Poornima DV, Sannabommaji T, et al. 2016. Hairy root cultures of Gymnema sylvestre R. Br. to produce gymnemic acid. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Methods in Molecular Biology, ed. Jain S. 2nd Edition. New York: Humana Press. pp. 427−43. doi: 10.1007/978-1-4939-3332-7_29 |
| [24] |
Mottaki Z, Rezayian M, Niknam V, Ebrahimzadeh H, Mirmasoumi M. 2019. Using hairy roots for production of secondary metabolites in Artemisia. Plant Biotechnology Reports 13:263−71 doi: 10.1007/s11816-019-00534-3 |
| [25] |
Grzegorczyk-Karolak I, Kuźma Ł, Skała E, Kiss AK. 2018. Hairy root cultures of Salvia viridis L. for production of polyphenolic compounds. Industrial Crops and Products 117:235−44 doi: 10.1016/j.indcrop.2018.03.014 |
| [26] |
Cardillo AB, Rodriguez Talou J, Giulietti AM. 2016. Establishment, culture, and scale-up of Brugmansia candida hairy roots for the production of tropane alkaloids. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Methods in Molecular Biology, ed. Jain S. 2nd Edition. New York: Humana Press. pp. 173−86. doi: 10.1007/978-1-4939-3332-7_12 |
| [27] |
Piątczak E, Jeleń A, Makowczyńska J, Zielińska S, Kuźma Ł, et al. 2019. Establishment of hairy root cultures of Rehmannia elata NE Brown ex Prain and production of iridoid and phenylethanoid glycosides. Industrial Crops and Products 137:308−314 doi: 10.1016/j.indcrop.2019.05.022 |
| [28] |
Jalalipour Parizi K, Rahpeyma SA, Pourseyedi S. 2020. The novel paclitaxel-producing system: establishment of Corylus avellana L. hairy root culture. In Vitro Cellular & Developmental Biology-Plant 56:290−97 doi: 10.1007/s11627-019-10050-2 |
| [29] |
Dai S, Wu W, Li Y. 2014. Determination of polyphenol contents in different Perilla frutescens strains with high performance liquid chromatography. Journal of Nuclear Agricultural Sciences 28:108−15 doi: 10.11869/j.issn.100-8551.2014.01.0108 |
| [30] |
Dastmalchi K, Damien Dorman HJ, Koşar M, Hiltunen R. 2007. Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT - Food Science and Technology 40(2):239−48 doi: 10.1016/j.lwt.2005.09.019 |
| [31] |
Kim HJ, Chen F, Wang X, Rajapakse NC. 2006. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry 54(6):2327−32 doi: 10.1021/jf051979g |
| [32] |
Yousefian S, Lohrasebi T, Farhadpour M, Haghbeen K. 2020. Production of phenolic acids in hairy root cultures of medicinal plant Mentha spicata L. in response to elicitors. Molecular Biology Research Communications 9(1):23−34 doi: 10.22099/mbrc.2020.36031.1475 |
| [33] |
Nguyen KV, Pongkitwitoon B, Pathomwichaiwat T, Viboonjun U, Prathanturarug S. 2019. Effects of methyl jasmonate on the growth and triterpenoid production of diploid and tetraploid Centella asiatica (L. ) Urb. hairy root cultures. Scientific Reports 9:18665 doi: 10.1038/s41598-019-54460-z |
| [34] |
Akhgari A, Laakso I, Maaheimo H, Choi YH, Seppänen-Laakso T, et al. 2019. Methyljasmonate elicitation increases terpenoid indole alkaloid accumulation in Rhazya stricta hairy root cultures. Plants 8(12):534 doi: 10.3390/plants8120534 |
| [35] |
Xing B, Yang D, Liu L, Han R, Sun Y, et al. 2018. Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots. Plant Cell, Tissue and Organ Culture (PCTOC) 134:119−29 doi: 10.1007/s11240-018-1405-x |
| [36] |
Li B, Wang B, Li H, Peng L, Ru M, et al. 2016. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253:87−100 doi: 10.1007/s00709-015-0790-9 |
| [37] |
Xiao Y, Gao S, Di P, Chen J, Chen W, et al. 2010. Lithospermic acid B is more responsive to silver ions (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Bioscience Reports 30(1):33−40 doi: 10.1042/BSR20080124 |
| [38] |
Li J, Li B, Luo L, Cao F, Yang B, et al. 2020. Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid. Molecular Biology Reports 47:8565−78 doi: 10.1007/s11033-020-05899-1 |
| [39] |
Zhang JH, Lv HZ, Liu WJ, Ji AJ, Zhang X, et al. 2020. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Chinese Herbal Medicines 12(3):237−46 doi: 10.1016/j.chmed.2020.04.001 |
| [40] |
Liu S, Wang Y, Shi M, Maoz I, Gao X, et al. 2022. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. Journal of Advanced Research 42:205−19 doi: 10.1016/j.jare.2022.02.005 |
| [41] |
XING B, LIANG L, LIU L, et al. 2018. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Reports 37(12):1681−92 doi: 10.1007/s00299-018-2339-9 |