[1]

Flies EJ, Brook BW, Blomqvist L, Buettel JC. 2018. Forecasting future global food demand: a systematic review and meta-analysis of model complexity. Environment International 120:93−103

doi: 10.1016/j.envint.2018.07.019
[2]

Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97

doi: 10.1146/annurev-arplant-050718-100049
[3]

Huang X, Huang S, Han B, Li J. 2022. The integrated genomics of crop domestication and breeding. Cell 185:2828−39

doi: 10.1016/j.cell.2022.04.036
[4]

Puchta H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56:1−14

doi: 10.1093/jxb/eri025
[5]

Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, et al. 2005. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. The Plant Journal 44:693−705

doi: 10.1111/j.1365-313X.2005.02551.x
[6]

Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, et al. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437−41

doi: 10.1038/nature07992
[7]

Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, et al. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442−45

doi: 10.1038/nature07845
[8]

Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America 107:12028−33

doi: 10.1073/pnas.0914991107
[9]

Li S, Li J, He Y, Xu M, Zhang J, et al. 2019. Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nature Biotechnology 37:445−50

doi: 10.1038/s41587-019-0065-7
[10]

Shan Q, Wang Y, Chen K, Liang Z, Li J, et al. 2013. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6:1365−68

doi: 10.1093/mp/sss162
[11]

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, et al. 2013. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161:20−27

doi: 10.1104/pp.112.205179
[12]

Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, et al. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8:67−69

doi: 10.1038/nmeth.1542
[13]

Miao J, Guo D, Zhang J, Huang Q, Qin G, et al. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research 23:1233−36

doi: 10.1038/cr.2013.123
[14]

Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications 7:13274

doi: 10.1038/ncomms13274
[15]

Shan Q, Wang Y, Li J, Gao C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9:2395−410

doi: 10.1038/nprot.2014.157
[16]

Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, et al. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14:327

doi: 10.1186/s12870-014-0327-y
[17]

Banakar R, Rai KM, Zhang F. 2022. CRISPR DNA- and RNP-mediated genome editing via Nicotiana benthamiana protoplast transformation and regeneration. In Protoplast Technology, eds Wang K, Zhang F. New York, NY: Humana. Volume 2464. pp. 65−82. doi: 10.1007/978-1-0716-2164-6_5

[18]

Sun X, Hu Z, Chen R, Jiang Q, Song G, et al. 2015. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports 5:10342

doi: 10.1038/srep10342
[19]

Lowder LG, Zhang D, Baltes NJ, Paul JW III, Tang X, et al. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology 169:971−85

doi: 10.1104/pp.15.00636
[20]

Chen X, Zhong Z, Tang X, Yang S, Zhang Y, et al. 2024. Advancing PAM-less genome editing in soybean using CRISPR-SpRY. Horticulture Research 11:uhae160

doi: 10.1093/hr/uhae160
[21]

Contreras JL, Sherkow JS. 2017. CRISPR, surrogate licensing, and scientific discovery. Science 355:698−700

doi: 10.1126/science.aal4222
[22]

Ledford H. 2017. Bitter CRISPR patent war intensifies. Nature

doi: 10.1038/nature.2017.22892
[23]

Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America 93:1156−60

doi: 10.1073/pnas.93.3.1156
[24]

Wolfe SA, Nekludova L, Pabo CO. 2000. DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics 29:183−212

doi: 10.1146/annurev.biophys.29.1.183
[25]

Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. 1998. FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America 95:10570−75

doi: 10.1073/pnas.95.18.10570
[26]

Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annual Review of Genetics 45:247−71

doi: 10.1146/annurev-genet-110410-132435
[27]

Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, et al. 2013. Trait stacking via targeted genome editing. Plant Biotechnology Journal 11:1126−34

doi: 10.1111/pbi.12107
[28]

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757−61

doi: 10.1534/genetics.110.120717
[29]

Christian M, Qi Y, Zhang Y, Voytas DF. 2013. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes| Genomes| Genetics 3:1697−705

doi: 10.1534/g3.113.007104
[30]

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39:e82

doi: 10.1093/nar/gkr218
[31]

Li T, Liu B, Spalding MH, Weeks DP, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30:390−92

doi: 10.1038/nbt.2199
[32]

Luo M, Li H, Chakraborty S, Morbitzer R, Rinaldo A, et al. 2019. Efficient TALEN-mediated gene editing in wheat. Plant Biotechnology Journal 17:2026−28

doi: 10.1111/pbi.13169
[33]

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32:947−51

doi: 10.1038/nbt.2969
[34]

Hsu PD, Zhang F. 2012. Dissecting neural function using targeted genome engineering technologies. ACS Chemical Neuroscience 3:603−10

doi: 10.1021/cn300089k
[35]

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 11:636−46

doi: 10.1038/nrg2842
[36]

Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

doi: 10.1126/science.1258096
[37]

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology 13:722−36

doi: 10.1038/nrmicro3569
[38]

Makarova KS, Zhang F, Koonin EV. 2017. SnapShot: Class 1 CRISPR-Cas Systems. Cell 168:946−946.e1

doi: 10.1016/j.cell.2017.02.018
[39]

Makarova KS, Zhang F, Koonin EV. 2017. SnapShot: Class 2 CRISPR-Cas Systems. Cell 168:328−328.e1

doi: 10.1016/j.cell.2016.12.038
[40]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816−21

doi: 10.1126/science.1225829
[41]

Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167−70

doi: 10.1126/science.1179555
[42]

Zong Y, Song Q, Li C, Jin S, Zhang D, et al. 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology 36:950−53

doi: 10.1038/nbt.4261
[43]

Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, et al. 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods 12:1143−49

doi: 10.1038/nmeth.3630
[44]

Chen PJ, Liu DR. 2023. Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics 24:161−77

doi: 10.1038/s41576-022-00541-1
[45]

Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, et al. 2021. CRISPR tools for physiology and cell state changes: potential of transcriptional engineering and epigenome editing. Physiological Reviews 101:177−211

doi: 10.1152/physrev.00034.2019
[46]

Fan T, Cheng Y, Wu Y, Liu S, Tang X, et al. 2024. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants. Nature Communications 15:5103

doi: 10.1038/s41467-024-49473-w
[47]

Ge Z, Zheng L, Zhao Y, Jiang J, Zhang EJ, et al. 2019. Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants. Plant Biotechnology Journal 17:1865−67

doi: 10.1111/pbi.13148
[48]

Hua K, Tao X, Han P, Wang R, Zhu JK. 2019. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant 12:1003−14

doi: 10.1016/j.molp.2019.03.009
[49]

Zeng D, Li X, Huang J, Li Y, Cai S, et al. 2020. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice. Plant Biotechnology Journal 18:1348−50

doi: 10.1111/pbi.13293
[50]

Ren Q, Sretenovic S, Liu S, Tang X, Huang L, et al. 2021. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nature Plants 7:25−33

doi: 10.1038/s41477-020-00827-4
[51]

Wu Y, Ren Q, Zhong Z, Liu G, Han Y, et al. 2022. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. Plant Biotechnology Journal 20:1670−82

doi: 10.1111/pbi.13838
[52]

Wang H, Ding J, Zhu J, Liu X, Xu R, et al. 2024. Developing a CRISPR/FrCas9 system for core promoter editing in rice. aBIOTECH 5:189−95

doi: 10.1007/s42994-024-00157-5
[53]

Huang TK, Armstrong B, Schindele P, Puchta H. 2021. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. Plant Biotechnology Journal 19:1314−24

doi: 10.1111/pbi.13546
[54]

He Y, Han Y, Ma Y, Liu S, Fan T, et al. 2024. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. Plant Biotechnology Journal 22:2488−503

doi: 10.1111/pbi.14363
[55]

Steinert J, Schiml S, Fauser F, Puchta H. 2015. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. The Plant Journal 84:1295−305

doi: 10.1111/tpj.13078
[56]

Xu R, Qin R, Xie H, Li J, Liu X, et al. 2022. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice. Plant Biotechnology Journal 20:350−59

doi: 10.1111/pbi.13716
[57]

Xu K, Ren C, Liu Z, Zhang T, Zhang T, et al. 2015. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cellular and Molecular Life Sciences 72:383−99

doi: 10.1007/s00018-014-1679-z
[58]

Chen W, Ma J, Wu Z, Wang Z, Zhang H, et al. 2023. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Molecular Cell 83:2768−2780.e6

doi: 10.1016/j.molcel.2023.06.014
[59]

Swarts DC, van der Oost J, Jinek M. 2017. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Molecular Cell 66:221−233.e4

doi: 10.1016/j.molcel.2017.03.016
[60]

Pacesa M, Pelea O, Jinek M. 2024. Past, present, and future of CRISPR genome editing technologies. Cell 187:1076−100

doi: 10.1016/j.cell.2024.01.042
[61]

Kumar J, Char SN, Weiss T, Liu H, Liu B, et al. 2023. Efficient protein tagging and cis-regulatory element engineering via precise and directional oligonucleotide-based targeted insertion in plants. The Plant Cell 35:2722−35

doi: 10.1093/plcell/koad139
[62]

Longo GMC, Sayols S, Kotini AG, Heinen S, Möckel MM, et al. 2025. Linking CRISPR–Cas9 double-strand break profiles to gene editing precision with BreakTag. Nature Biotechnology 43:608−22

doi: 10.1038/s41587-024-02238-8
[63]

Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, et al. 2018. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362:240−42

doi: 10.1126/science.aau5174
[64]

Zhou J, Liu G, Zhao Y, Zhang R, Tang X, et al. 2023. An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nature Plants 9:588−604

doi: 10.1038/s41477-023-01384-2
[65]

Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, et al. 2017. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants 3:17018

doi: 10.1038/nplants.2017.18
[66]

Li S, Zhang X, Wang W, Guo X, Wu Z, et al. 2018. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Molecular Plant 11:995−98

doi: 10.1016/j.molp.2018.03.009
[67]

Zhong Z, Zhang Y, You Q, Tang X, Ren Q, et al. 2018. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Molecular Plant 11:999−1002

doi: 10.1016/j.molp.2018.03.008
[68]

Su H, Wang Y, Xu J, Omar AA, Grosser JW, et al. 2023. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. Nature Communications 14:3957

doi: 10.1038/s41467-023-39714-9
[69]

Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, et al. 2019. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology 17:9

doi: 10.1186/s12915-019-0629-5
[70]

Gray BN, Spruill WM. 2017. CRISPR–Cas9 claim sets and the potential to stifle innovation. Nature Biotechnology 35:630−33

doi: 10.1038/nbt.3913
[71]

Starling S. 2017. CRISPR patent results. Nature Reviews Microbiology 15:194

doi: 10.1038/nrmicro.2017.21
[72]

Ledford H. 2016. Bitter fight over CRISPR patent heats up. Nature 529:265

doi: 10.1038/nature.2015.17961
[73]

Sherkow JS. 2015. Law, history and lessons in the CRISPR patent conflict. Nature Biotechnology 33:256−57

doi: 10.1038/nbt.3160
[74]

Charpentier E. 2017. China. Patent No. CN107603976A

[75]

Charpentier E. 2013. China. Patent No. CN104854241A

[76]

Zhang F. 2013. China. Patent No. CN105121648A

[77]

Zhang F. 2016. China. Patent No. CN108513582A

[78]

Zhang F. 2016. China. Patent No. CN109207477A

[79]

Tang X, Zhang Y. 2023. Beyond knockouts: fine-tuning regulation of gene expression in plants with CRISPR-Cas-based promoter editing. New Phytologist 239:868−74

doi: 10.1111/nph.19020
[80]

Liu S, He Y, Fan T, Zhu M, Qi C, et al. 2025. PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato. Plant Biotechnology Journal 23:156−73

doi: 10.1111/pbi.14486
[81]

Tang X, Liu G, Zhou J, Ren Q, You Q, et al. 2018. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology 19:84

doi: 10.1186/s13059-018-1458-5
[82]

Bestas B, Wimberger S, Degtev D, Madsen A, Rottner AK, et al. 2023. A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo. Nature Communications 14:5474

doi: 10.1038/s41467-023-41240-7
[83]

Guo C, Ma X, Gao F, Guo Y. 2023. Off-target effects in CRISPR/Cas9 gene editing. Frontiers in Bioengineering and Biotechnology 11:1143157

doi: 10.3389/fbioe.2023.1143157
[84]

Yu T, Cui H, Li JC, Luo Y, Jiang G, et al. 2023. Enzyme function prediction using contrastive learning. Science 379:1358−63

doi: 10.1126/science.adf2465
[85]

Aliaga Goltsman DS, Alexander LM, Lin JL, Fregoso Ocampo R, Freeman B, et al. 2022. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nature Communications 13:7602

doi: 10.1038/s41467-022-35257-7
[86]

Zhang Y, Ren Q, Tang X, Liu S, Malzahn AA, et al. 2021. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications 12:1944

doi: 10.1038/s41467-021-22330-w
[87]

Koonin EV, Makarova KS, Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37:67−78

doi: 10.1016/j.mib.2017.05.008
[88]

Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, et al. 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218−23

doi: 10.1038/s41586-019-0908-x
[89]

Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, et al. 2021. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Molecular Cell 81:558−570.e3

doi: 10.1016/j.molcel.2020.11.035
[90]

Duan Z, Liang Y, Sun J, Zheng H, Lin T, et al. 2024. An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants. The Innovation 5:100564

doi: 10.1016/j.xinn.2024.100564
[91]

Liu S, Sretenovic S, Fan T, Cheng Y, Li G, et al. 2022. Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant Communications 3:100453

doi: 10.1016/j.xplc.2022.100453
[92]

Sun A, Li CP, Chen Z, Zhang S, Li DY, et al. 2023. The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation. Cell Research 33:229−44

doi: 10.1038/s41422-022-00771-2
[93]

Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, et al. 2022. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185:4574−4586.e16

doi: 10.1016/j.cell.2022.10.020
[94]

Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, et al. 2021. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599:692−96

doi: 10.1038/s41586-021-04058-1
[95]

Badon IW, Oh Y, Kim HJ, Lee SH. 2024. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Molecular Therapy 32:32−43

doi: 10.1016/j.ymthe.2023.11.013
[96]

Saito M, Xu P, Faure G, Maguire S, Kannan S, et al. 2023. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620:660−68

doi: 10.1038/s41586-023-06356-2
[97]

Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, et al. 2021. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374:57−65

doi: 10.1126/science.abj6856
[98]

Han D, Xiao Q, Wang Y, Zhang H, Dong X, et al. 2023. Development of miniature base editors using engineered IscB nickase. Nature Methods 20:1029−36

doi: 10.1038/s41592-023-01898-9
[99]

Zhu H, Li C, Gao C. 2020. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology 21:661−77

doi: 10.1038/s41580-020-00288-9
[100]

Lin Q, Zhu Z, Liu G, Sun C, Lin D, et al. 2021. Genome editing in plants with MAD7 nuclease. Journal of Genetics and Genomics 48:444−51

doi: 10.1016/j.jgg.2021.04.003
[101]

Bai M, Lin W, Peng C, Song P, Kuang H, et al. 2024. Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants. Molecular Plant 17:363−66

doi: 10.1016/j.molp.2024.02.010
[102]

McGaw C, Garrity AJ, Munoz GZ, Haswell JR, Sengupta S, et al. 2022. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nature Communications 13:2833

doi: 10.1038/s41467-022-30465-7
[103]

Lv P, Su F, Chen F, Yan C, Xia D, et al. 2024. Genome editing in rice using CRISPR/Cas12i3. Plant Biotechnology Journal 22:379−85

doi: 10.1111/pbi.14192
[104]

Xie H, Song M, Cao X, Niu Q, Zhu J, et al. 2024. Breeding exceptionally fragrant soybeans for soy milk with strong aroma. Journal of Integrative Plant Biology 66:642−44

doi: 10.1111/jipb.13631
[105]

Bai Y, Liu S, Bai Y, Xu Z, Zhao H, et al. 2024. Application of CRISPR/Cas12i. 3 for targeted mutagenesis in broomcorn millet (Panicum miliaceum L.). Journal of Integrative Plant Biology 66:1544−47

doi: 10.1111/jipb.13669
[106]

Wang B, Smith SM, Li J. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology 69:437−68

doi: 10.1146/annurev-arplant-042817-040422
[107]

Li Z, Zhong Z, Wu Z, Pausch P, Al-Shayeb B, et al. 2023. Genome editing in plants using the compact editor CasΦ. Proceedings of the National Academy of Sciences of the United States of America 120:e2216822120

doi: 10.1073/pnas.2216822120
[108]

Gong Z, Previtera DA, Wang Y, Botella JR. 2024. Geminiviral-induced genome editing using miniature CRISPR/Cas12j (CasΦ) and Cas12f variants in plants. Plant Cell Reports 43:71

doi: 10.1007/s00299-023-03092-9
[109]

Bai S, Cao X, Hu L, Hu D, Li D, et al. 2025. Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants. Plant Biotechnology Journal 23:1153−64

doi: 10.1111/pbi.14574
[110]

Karmakar S, Panda D, Panda S, Dash M, Saha R, et al. 2024. A miniature alternative to Cas9 and Cas12: transposon-associated TnpB mediates targeted genome editing in plants. Plant Biotechnology Journal 22:2950−53

doi: 10.1111/pbi.14416
[111]

Zhang R, Tang X, He Y, Li Y, Wang W, et al. 2024. IsDge10 is a hypercompact TnpB nuclease that confers efficient genome editing in rice. Plant Communications 5:101068

doi: 10.1016/j.xplc.2024.101068
[112]

Lv Z, Chen W, Fang S, Dong B, Wang X, et al. 2024. Targeted mutagenesis in Arabidopsis and medicinal plants using transposon-associated TnpB. Journal of Integrative Plant Biology 66:2083−86

doi: 10.1111/jipb.13758
[113]

Pietralla J, Capdeville N, Schindele P, Puchta H. 2024. Optimizing ErCas12a for efficient gene editing in Arabidopsis thaliana. Plant Biotechnology Journal 22:401−12

doi: 10.1111/pbi.14194
[114]

An Y, Geng Y, Yao J, Fu C, Lu M, et al. 2020. Efficient genome editing in Populus using CRISPR/Cas12a. Frontiers in Plant Science 11:593938

doi: 10.3389/fpls.2020.593938
[115]

Hsu CT, Lee WC, Cheng YJ, Yuan YH, Wu FH, et al. 2020. Genome editing and protoplast regeneration to study plant–pathogen interactions in the model plant Nicotiana benthamiana. Frontiers in Genome Editing 2:627803

doi: 10.3389/fgeed.2020.627803
[116]

Wang W, Tian B, Pan Q, Chen Y, He F, et al. 2021. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnology Journal 19:2428−41

doi: 10.1111/pbi.13669
[117]

He Y, Liu S, Chen L, Pu D, Zhong Z, et al. 2024. Versatile plant genome engineering using anti-CRISPR-Cas12a systems. Science China Life Sciences 67:2730−45

doi: 10.1007/s11427-024-2704-7
[118]

Hui F, Tang X, Li B, Alariqi M, Xu Z, et al. 2024. Robust CRISPR/Mb2Cas12a genome editing tools in cotton plants. iMeta 3:e209

doi: 10.1002/imt2.209
[119]

Ming M, Ren Q, Pan C, He Y, Zhang Y, et al. 2020. CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants 6:202−08

doi: 10.1038/s41477-020-0614-6
[120]

Wang Q, Alariqi M, Wang F, Li B, Ding X, et al. 2020. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnology Journal 18:2436−43

doi: 10.1111/pbi.13417
[121]

Wu F, Qiao X, Zhao Y, Zhang Z, Gao Y, et al. 2020. Targeted mutagenesis in Arabidopsis thaliana using CRISPR-Cas12b/C2c1. Journal of Integrative Plant Biology 62:1653−58

doi: 10.1111/jipb.12944
[122]

Haider S, Faiq A, Khan MZ, Mansoor S, Amin I. 2022. Fully Transient CRISPR/Cas12f system in plants capable of broad-spectrum resistance against Begomovirus. bioRxiv preprint

doi: 10.1101/2022.06.07.495110
[123]

Sukegawa S, Nureki O, Toki S, Saika H. 2023. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Frontiers in Genome Editing 5:1138843

doi: 10.3389/fgeed.2023.1138843
[124]

Xie H, Su F, Niu Q, Geng L, Cao X, et al. 2024. Knockout of miR396 genes increases seed size and yield in soybean. Journal of Integrative Plant Biology 66:1148−57

doi: 10.1111/jipb.13660
[125]

Zhao S, Han X, Zhu Y, Han Y, Liu H, et al. 2024. CRISPR/CasΦ2-mediated gene editing in wheat and rye. Journal of Integrative Plant Biology 66:638−41

doi: 10.1111/jipb.13624
[126]

Duan Z, Zhang X, Zhang JT, Li S, Liu R, et al. 2023. Molecular basis for DNA cleavage by the hypercompact Cas12j-SF05. Cell Discovery 9:117

doi: 10.1038/s41421-023-00612-5
[127]

Li Q, Wang Y, Hou Z, Zong H, Wang X, et al. 2024. Genome editing in plants using the TnpB transposase system. aBIOTECH 5:225−30

doi: 10.1007/s42994-024-00172-6
[128]

Chen Y, Hu Y, Wang X, Luo S, Yang N, et al. 2022. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. The Innovation 3:100264

doi: 10.1016/j.xinn.2022.100264
[129]

Xiang G, Li Y, Sun J, Huo Y, Cao S, et al. 2024. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nature Biotechnology 42:745−57

doi: 10.1038/s41587-023-01857-x
[130]

Xu Y, Liu T, Wang J, Xiong B, Liu L, et al. 2023. Reprogramming an RNA-guided archaeal TnpB endonuclease for genome editing. Cell Discovery 9:112

doi: 10.1038/s41421-023-00615-2
[131]

Esvelt KM, Carlson JC, Liu DR. 2011. A system for the continuous directed evolution of biomolecules. Nature 472:499−503

doi: 10.1038/nature09929
[132]

Xu R, Li H, Qin R, Wang L, Li L, et al. 2014. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7:5

doi: 10.1186/s12284-014-0005-6
[133]

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274−84

doi: 10.1016/j.molp.2015.04.007
[134]

Ren C, Liu Y, Guo Y, Duan W, Fan P, et al. 2021. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Horticulture Research 8:52

doi: 10.1038/s41438-021-00489-z
[135]

Ordon J, Bressan M, Kretschmer C, Dall'Osto L, Marillonnet S, et al. 2020. Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Functional & Integrative Genomics 20:151−62

doi: 10.1007/s10142-019-00665-4
[136]

Diamos AG, Mason HS. 2018. Chimeric 3' flanking regions strongly enhance gene expression in plants. Plant Biotechnology Journal 16:1971−82

doi: 10.1111/pbi.12931
[137]

Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, et al. 2021. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Communications 2:100135

doi: 10.1016/j.xplc.2020.100135
[138]

Wang L, Han H. 2024. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 10:e38588

doi: 10.1016/j.heliyon.2024.e38588
[139]

Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, et al. 2015. Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnology Advances 33:1024−42

doi: 10.1016/j.biotechadv.2015.03.012
[140]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345