| [1] |
Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany 65:4561−75 doi: 10.1093/jxb/eru277 |
| [2] |
Cherian S, Figueroa CR, Nair H. 2014. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany 65:4705−4722 doi: 10.1093/jxb/eru280 |
| [3] |
Fenn MA, Giovannoni JJ. 2021. Phytohormones in fruit development and maturation. The Plant Journal 105:446−58 doi: 10.1111/tpj.15112 |
| [4] |
Perotti MF, Posé D, Martín-Pizarro C. 2023. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. Journal of Experimental Botany 74:6237−53 doi: 10.1093/jxb/erad271 |
| [5] |
Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, et al. 2023. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. Plant Physiology 191(1):610−25 doi: 10.1093/plphys/kiac464 |
| [6] |
Liu M, Wang C, Ji H, Sun M, Liu T, et al. 2024. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. Frontiers in plant science 15:1368692 doi: 10.3389/fpls.2024.1368692 |
| [7] |
Bai Q, Huang Y, Shen Y. 2021. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science 11:619953 doi: 10.3389/fpls.2020.619953 |
| [8] |
Mou W, Li D, Bu J, Jiang Y, Khan ZU, et al. 2016. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS One 11:e0154072 doi: 10.1371/journal.pone.0154072 |
| [9] |
An J, Althiab Almasaud R, Bouzayen M, Zouine M, Chervin C. 2020. Auxin and ethylene regulation of fruit set. Plant Science 292:110381 doi: 10.1016/j.plantsci.2019.110381 |
| [10] |
Weng L, Zhao F, Li R, Xiao H. 2015. Cross-talk modulation between ABA and ethylene by transcription factor SlZFP2 during fruit development and ripening in tomato. Plant Signaling & Behavior 10:e1107691 doi: 10.1080/15592324.2015.1107691 |
| [11] |
Weng L, Zhao F, Li R, Xu C, Chen K, et al. 2015. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology 167:931−49 doi: 10.1104/pp.114.255174 |
| [12] |
Sun L, Yuan B, Zhang M, Wang L, Cui M, et al. 2012. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany 63:3097−108 doi: 10.1093/jxb/ers026 |
| [13] |
Kai W, Wang J, Liang B, Fu Y, Zheng Y, et al. 2019. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. Journal of Experimental Botany 70:6305−19 doi: 10.1093/jxb/erz396 |
| [14] |
Wang J, Xu Y, Zhang W, Zheng Y, Yuan B, et al. 2021. Tomato SIPP2C5 is involve in the regulation of fruit development and ripening. Plant and Cell Physiology 62:1760−69 doi: 10.1093/pcp/pcab130 |
| [15] |
Mou W, Li D, Luo Z, Li L, Mao L, et al. 2018. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science 276:239−49 doi: 10.1016/j.plantsci.2018.07.015 |
| [16] |
Liu J, Qiao Y, Li C, Hou B. 2023. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. Frontiers in Plant Science 14:1095967 doi: 10.3389/fpls.2023.1095967 |
| [17] |
Kou X, Zhao Y, Wu C, Jiang B, Zhang Z, et al. 2018. SNAC4 and SNAC9 transcription factors show contrasting effects on tomato carotenoids biosynthesis and softening. Postharvest Biology and Technology 144:9−19 doi: 10.1016/j.postharvbio.2018.05.008 |
| [18] |
Ma N, Feng H, Meng X, Li D, Yang D, et al. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology 14:351 doi: 10.1186/s12870-014-0351-y |
| [19] |
Yang S, Zhou J, Watkins CB, Wu C, Feng Y, et al. 2021. NAC transcription factors SNAC4 and SNAC9 synergistically regulate tomato fruit ripening by affecting expression of genes involved in ethylene and abscisic acid metabolism and signal transduction. Postharvest Biology and Technology 178:111555 doi: 10.1016/j.postharvbio.2021.111555 |
| [20] |
Gao Y, Wei W, Fan Z, Zhao X, Zhang Y, et al. 2020. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of Experimental Botany 71:3560−74 doi: 10.1093/jxb/eraa131 |
| [21] |
Zhang S, Dong R, Wang Y, Li X, Ji M, et al. 2021. NAC domain gene VvNAC26 interacts with VvMADS9 and influences seed and fruit development. Plant Physiology and Biochemistry 164:63−72 doi: 10.1016/j.plaphy.2021.04.031 |
| [22] |
Waseem M, Li N, Su D, Chen J, Li Z. 2019. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.). Planta 250:173−85 doi: 10.1007/s00425-019-03157-8 |
| [23] |
Wang S, Saito T, Ohkawa K, Ohara H, Suktawee S, et al. 2018. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. Journal of Plant Physiology 221:85−93 doi: 10.1016/j.jplph.2017.12.007 |
| [24] |
Sadka A, Qin Q, Feng J, Farcuh M, Shlizerman L, et al. 2019. Ethylene Response of Plum ACC Synthase 1 (ACS1) promoter is mediated through the binding site of Abscisic Acid Insensitive 5 (ABI5). Plants 8:117 doi: 10.3390/plants8050117 |
| [25] |
Lang Z, Wang Y, Tang K, Tang D, Datsenka T, et al. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 114:E4511−E4519 doi: 10.1073/pnas.1705233114 |
| [26] |
Xiao K, Chen J, He Q, Wang Y, Shen H, et al. 2020. DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. Journal of Experimental Botany 71:1928−42 doi: 10.1093/jxb/eraa003 |
| [27] |
Liu R, How-Kit A, Stammitti L, Teyssier E, Rolin D, et all. 2015. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences 112:10804−9 doi: 10.1073/pnas.1503362112 |
| [28] |
Ding X, Liu X, Jiang G, Li Z, Song Y, et al. 2022. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. New Phytologist 233:1202−19 doi: 10.1111/nph.17838 |
| [29] |
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, et al. 2021. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytologist 230:567−84 doi: 10.1111/nph.17177 |
| [30] |
Ming Y, Jiang L, Ji D. 2023. Epigenetic regulation in tomato fruit ripening. Frontiers in Plant Science 14:1269090 doi: 10.3389/fpls.2023.1269090 |
| [31] |
Tosetti R, Elmi F, Pradas I, Cools K, Terry LA. 2020. Continuous exposure to ethylene differentially affects senescence in receptacle and achene tissues in strawberry fruit. Frontiers in plant science 11:174 doi: 10.3389/fpls.2020.00174 |
| [32] |
Sun L, Zhang M, Ren J, Qi J, Zhang G, et al. 2010. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biology 10:257 doi: 10.1186/1471-2229-10-257 |
| [33] |
Wang X, Zeng W, Ding Y, Wang Y, Niu L, et al. 2019. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Horticulture Research 6:19 doi: 10.1038/s41438-018-0094-2 |
| [34] |
Wang X, Zeng W, Ding Y, Wang Y, Niu L, et al. 2019. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science 283:116−26 doi: 10.1016/j.plantsci.2019.02.009 |
| [35] |
Sun Y, Liang B, Wang J, Kai W, Chen P, et al. 2018. SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato. Plant and Cell Physiology 59:1956−65 doi: 10.1093/pcp/pcy111 |
| [36] |
Song Z, Lai X, Yao Y, Qin J, Ding X, et al. 2022. F-box protein EBF1 and transcription factor ABI5-like regulate banana fruit chilling-induced ripening disorder. Plant Physiology 188:1312−34 doi: 10.1093/plphys/kiab532 |
| [37] |
Hou Y, Zhai L, Li X, Xue Y, Wang J, et al. 2017. Comparative analysis of fruit ripening-related miRNAs and their targets in blueberry using small rna and degradome sequencing. International Journal of Molecular Sciences 18:2767 doi: 10.3390/ijms18122767 |
| [38] |
Chen R, Wu Y, Wei X, Huang Z, Mao L. 2023. Ethylene promotes ABA biosynthesis by repressing the expression of miR161 in postharvest strawberry fruit. Postharvest Biology and Technology 199:112302 doi: 10.1016/j.postharvbio.2023.112302 |
| [39] |
Zhu Q, Tan Q, Gao Q, Zheng S, Chen W, et al. 2024. Calmodulin-like protein CML15 interacts with PP2C46/65 to regulate papaya fruit ripening via integrating calcium, ABA and ethylene signals. Plant Biotechnology Journal 22:1703−23 doi: 10.1111/pbi.14297 |
| [40] |
Shin JH, Mila I, Liu M, Rodrigues MA, Vernoux T, et al. 2019. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. New Phytologist 222:820−36 doi: 10.1111/nph.15618 |
| [41] |
Wang X, Meng J, Deng L, Wang Y, Liu H, et al. 2021. Diverse functions of IAA-leucine resistant PpILR1 Provide a genic basis for auxin-ethylene crosstalk during peach fruit ripening. Frontiers in Plant Science 12:655758 doi: 10.3389/fpls.2021.655758 |
| [42] |
Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, et al. 2013. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). Journal of Experimental Botany 64:1049−59 doi: 10.1093/jxb/ers381 |
| [43] |
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, et al. 2022. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. Plant Physiology 190(4):2775−96 doi: 10.1093/plphys/kiac441 |
| [44] |
Yuan Y, Xu X, Gong Z, Tang Y, Wu M, et al. 2019. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Horticulture Research 6:85 doi: 10.1038/s41438-019-0167-x |
| [45] |
Yue P, Lu Q, Liu Z, Lv T, Li X, et al. 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist 226:1781−1795 doi: 10.1111/nph.16500 |
| [46] |
Wang T, Zhang J, Zhang S, Gong Y, Wang N, et al. 2024. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression. Plant Cell Reports 43:212 doi: 10.1007/s00299-024-03293-w |
| [47] |
Zhang T, Li W, Xie R, Xu L, Zhou Y, et al. 2020. CpARF2 and CpEIL1 interact to mediate auxin–ethylene interaction and regulate fruit ripening in papaya. The Plant Journal 103:1318−37 doi: 10.1111/tpj.14803 |
| [48] |
Chen X, Liu Y, Zhang X, Zheng B, Han Y, et al. 2023. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach. Horticulture Research 10:uhad158 doi: 10.1093/hr/uhad158 |
| [49] |
Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, et al. 2014. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS One 9:e84203 doi: 10.1371/journal.pone.0084203 |
| [50] |
Kumar R, Tyagi AK, Sharma AK. 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics 285:245−60 doi: 10.1007/s00438-011-0602-7 |
| [51] |
Forlani S, Masiero S, Mizzotti C. 2019. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. Journal of Experimental Botany 70:2993−3006 doi: 10.1093/jxb/erz112 |
| [52] |
Wu W, Cao SF, Shi LY, Chen W, Yin XR, et al. 2023. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. Frontiers in plant science 14:1279031 doi: 10.3389/fpls.2023.1279031 |
| [53] |
Chaabouni S, Jones B, Delalande C, Wang H, Li Z, et al. 2009. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. Journal of Experimental Botany 60:1349−62 doi: 10.1093/jxb/erp009 |
| [54] |
Liu M, Chen Y, Chen Y, Shin JH, Mila I, et al. 2018. The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. New Phytologist 219:631−40 doi: 10.1111/nph.15165 |
| [55] |
Li J, Tao X, Bu J, Ying T, Mao L, et al. 2017. Global transcriptome profiling analysis of ethylene-auxin interaction during tomato fruit ripening. Postharvest Biology and Technology 130:28−38 doi: 10.1016/j.postharvbio.2017.03.021 |
| [56] |
Liu K, Yuan C, Feng S, Zhong S, Li H, et al. 2017. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics 18:351 doi: 10.1186/s12864-017-3722-6 |
| [57] |
Wang X, Pan L, Wang Y, Meng J, Deng L, et al. 2021. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science 313:111084 doi: 10.1016/j.plantsci.2021.111084 |
| [58] |
Ma L, Zhao Y, Chen M, Li Y, Shen Z, et al. 2023. The microRNA ppe-miR393 mediates auxin-induced peach fruit softening by promoting ethylene production. Plant Physiology 192:1638−55 doi: 10.1093/plphys/kiad182 |
| [59] |
Cao S, Guo Z, Liu H, Qi K, Xie Z, et al. 2025. The Aux/IAA factor PbIAA. C3 positively regulates ethylene biosynthesis during pear fruit ripening by activating the PbACS1b transcription. Journal of Plant Growth Regulation 44:1152−64 doi: 10.1007/s00344-024-11248-4 |
| [60] |
Sravankumar T, Akash, Naik N, Kumar R. 2018. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Plant Molecular Biology 98:455−69 doi: 10.1007/s11103-018-0790-1 |
| [61] |
Gan Z, Yuan X, Shan N, Wan C, Chen C, et al. 2021. AcERF1B and AcERF073 Positively Regulate indole-3-acetic acid degradation by activating AcGH3.1 transcription during postharvest kiwifruit ripening. Journal of Agricultural and Food Chemistry 69:13859−70 doi: 10.1021/acs.jafc.1c03954 |
| [62] |
Yue P, Wang Y, Bu H, Li X, Yuan H, et al. 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology 157:110955 doi: 10.1016/j.postharvbio.2019.11095 |
| [63] |
Khaksar G, Sirikantaramas S. 2021. Transcriptome-wide identification and expression profiling of the ERF gene family suggest roles as transcriptional activators and repressors of fruit ripening in durian. PLoS One 16:e0252367 doi: 10.1371/journal.pone.0252367 |
| [64] |
Cai J, Wu Z, Song Z, Abbas F, Chen W, et al. 2022. ATAC-seq and RNA-seq reveal the role of AGL18 in regulating fruit ripening via ethylene-auxin crosstalk in papaya. Postharvest Biology and Technology 191:111984 doi: 10.1016/j.postharvbio.2022.111984 |
| [65] |
Li T, Dai Z, Zeng B, Li J, Ouyang J, et al. 2022. Autocatalytic biosynthesis of abscisic acid and its synergistic action with auxin to regulate strawberry fruit ripening. Horticulture Research 9:uhab076 doi: 10.1093/hr/uhab076 |
| [66] |
Gouthu S, Deluc LG. 2015. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels. BMC Plant Biology 15:46 doi: 10.1186/s12870-015-0440-6 |
| [67] |
Su L, Diretto G, Purgatto E, Danoun S, Zouine M, et al. 2015. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biology 15:114 doi: 10.1186/s12870-015-0495-4 |
| [68] |
Böttcher C, Boss PK, Davies C. 2011. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany 62:4267−80 doi: 10.1093/jxb/err134 |
| [69] |
Li BJ, Shi YN, Xiao YN, Jia HR, Yang XF, et al. 2024. AUXIN RESPONSE FACTOR 2 mediates repression of strawberry receptacle ripening via auxin-ABA interplay. Plant Physiology 196:2638−53 doi: 10.1093/plphys/kiae510 |
| [70] |
Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, et al. 2016. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening. PLoS Genetics 12:e1005903 doi: 10.1371/journal.pgen.1005903 |
| [71] |
Soto A, Ruiz KB, Ravaglia D, Costa G, Torrigiani P. 2013. ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage. Plant Physiology and Biochemistry 64:11−24 doi: 10.1016/j.plaphy.2012.12.011 |
| [72] |
Wang Y, Chen P, Sun L, Li Q, Dai S, et al. 2015. Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regulation 75:455−64 doi: 10.1007/s10725-014-0006-x |
| [73] |
Chen J, Mao L, Lu W, Ying T, Luo Z. 2016. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243:183−97 doi: 10.1007/s00425-015-2402-5 |
| [74] |
Wu M, Liu K, Li H, Li Y, Zhu Y, et al. 2024. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. Horticulture Research 11:uhad275 doi: 10.1093/hr/uhad275 |
| [75] |
McAtee P, Karim S, Schaffer R, David K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in plant science 4:79 doi: 10.3389/fpls.2013.00079 |
| [76] |
Li H, Wu H, Qi Q, Li H, Li Z, et al. 2019. Gibberellins play a role in regulating tomato fruit ripening. Plant and Cell Physiology 60:1619−29 doi: 10.1093/pcp/pcz069 |
| [77] |
Park MH, Malka SK. 2022. Gibberellin delays metabolic shift during tomato ripening by inducing auxin signaling. Frontiers in plant science 13:1045761 doi: 10.3389/fpls.2022.1045761 |
| [78] |
Ding Q, Wang F, Xue J, Yang X, Fan J, et al. 2020. Identification and expression analysis of hormone biosynthetic and metabolism genes in the 2OGD family for identifying genes that may be involved in tomato fruit ripening. International Journal of Molecular Sciences 21:5344 doi: 10.3390/ijms21155344 |
| [79] |
Jung CJ, Hur YY, Yu HJ, Noh JH, Park KS, et al. 2014. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS One 9:e95634 doi: 10.1371/journal.pone.0095634 |
| [80] |
Gambetta G, Martínez-Fuentes A, Bentancur O, Mesejo C, Reig C, et al. 2012. Hormonal and nutritional changes in the flavedo regulating rind color development in sweet orange [Citrus sinensis (L.) Osb.]. Journal of Plant Growth Regulation 31:273−82 doi: 10.1007/s00344-011-9237-5 |
| [81] |
Alós E, Cercós M, Rodrigo MJ, Zacarías L, Talón M. 2006. Regulation of color break in citrus fruits. changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. Journal of Agricultural and Food Chemistry 54:4888−95 doi: 10.1021/jf0606712 |
| [82] |
Wang J, Wang Y, Yu Y, Zhang J, Ren Y, et al. 2023. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation. Journal of Integrative Plant Biology 65:2336−48 |
| [83] |
Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, et al. 2013. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant and Cell Physiology 54:218−36 doi: 10.1093/pcp/pcs167 |
| [84] |
Mujica K, Ponce C, Silva H, Meisel LA. 2020. Identification of a conserved set of cytokinin-responsive genes expressed in the fruits of Prunus persica. Plant Growth Regulation 92:65−80 doi: 10.1007/s10725-020-00620-5 |
| [85] |
Liu XS, Luo YC, Wang SW, Wang HC, Harpaz-Saad S, et al. 2022. Residue analysis and the effect of preharvest forchlorfenuron (CPPU) application on on-tree quality maintenance of ripe fruit in "Feizixiao" Litchi (Litchi chinensis Sonn.). Frontiers in plant science 13:829635 doi: 10.3389/fpls.2022.829635 |
| [86] |
Zhang Y, Gao Z, Hu M, Pan Y, Xu X, et al. 2022. Delay of ripening and senescence in mango fruit by 6-benzylaminopurine is associated with inhibition of ethylene biosynthesis and membrane lipid catabolism. Postharvest Biology and Technology 185:111797 doi: 10.1016/j.postharvbio.2021.111797 |
| [87] |
Reig C, Martínez-Fuentes A, Mesejo C, Rodrigo MJ, Zacarías L, et al. 2016. Loquat fruit lacks a ripening-associated autocatalytic rise in ethylene production. Journal of Plant Growth Regulation 35:232−44 doi: 10.1007/s00344-015-9528-3 |
| [88] |
Gonçalves CX, Tiecher A, Chaves FC, Nora L, Li Z, et al. 2013. Putative role of cytokinin in differential ethylene response of two lines of antisense ACC oxidase cantaloupe melons. Postharvest Biology and Technology 86:511−19 doi: 10.1016/j.postharvbio.2013.07.040 |
| [89] |
Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, et al. 2016. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. Journal of Proteomics 143:318−33 doi: 10.1016/j.jprot.2016.02.013 |
| [90] |
Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, et al. 2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies 58:6 doi: 10.1186/s40529-016-0159-1 |
| [91] |
Hu B, Li J, Wang D, Wang H, Qin Y, et al. 2018. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regulation 84:437−50 doi: 10.1007/s10725-017-0351-7 |
| [92] |
Nie R, Chen D, Hu T, Zhang S, Qu G. 2024. A review: the role of jasmonic acid in tomato flower and fruit development. Plant Molecular Biology Reporter doi: 10.1007/s11105-024-01505-x |
| [93] |
Ding X, Wang B, Gong Y, Yan X, Chen X, et al. 2024. Exogenous methyl jasmonate (MeJA) improves 'Ruixue' apple fruit quality by regulating cell wall metabolism. Foods 13:1594 doi: 10.3390/foods13111594 |
| [94] |
Wei J, Wen X, Tang L. 2017. Effect of methyl jasmonic acid on peach fruit ripening progress. Scientia Horticulturae 220:206−213 doi: 10.1016/j.scienta.2017.03.004 |
| [95] |
Li T, Xu Y, Zhang L, Ji Y, Tan D, et al. 2017. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. The Plant Cell 29:1316−34 doi: 10.1105/tpc.17.00349 |
| [96] |
Han Y, Chen C, Yan Z, Li J, Wang Y. 2019. The methyl jasmonate accelerates the strawberry fruits ripening process. Scientia Horticulturae 249:250−56 doi: 10.1016/j.scienta.2019.01.061 |
| [97] |
Gao Y, Wang X, Liu X, Liang Z. 2022. Hormone biosynthesis and metabolism members of 2OGD superfamily are involved in berry development and respond to MeJA and ABA treatment of Vitis vinifera L. BMC Plant Biology 22:427 doi: 10.1186/s12870-022-03810-7 |
| [98] |
Ding F, Wang C, Xu N, Wang M. 2022. The ethylene response factor SlERF. B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato. Environmental and Experimental Botany 203:105073 doi: 10.1016/j.envexpbot.2022.105073 |
| [99] |
Hu Y, Sun H, Han Z, Wang S, Wang T, et al. 2022. ERF4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal 8:689−99 doi: 10.1016/j.hpj.2022.01.002 |
| [100] |
Kumar N, Tokas J, Raghavendra M, Singal HR. 2021. Impact of exogenous salicylic acid treatment on the cell wall metabolism and ripening process in postharvest tomato fruit stored at ambient temperature. International Journal of Food Science and Technology 56:2961−72 doi: 10.1111/ijfs.14936 |
| [101] |
Shi H, Zhang Y, Chen L. 2019. Expression and regulation of PpEIN3b during fruit ripening and senescence via integrating SA, glucose, and ACC signaling in pear (Pyrus pyrifolia Nakai. Whangkeumbae). Genes 10:476 doi: 10.3390/genes10060476 |
| [102] |
Xu Y, Huo L, Zhao K, Li Y, Zhao X, et al. 2023. Salicylic acid delays pear fruit senescence by playing an antagonistic role toward ethylene, auxin, and glucose in regulating the expression of PpEIN3a. Frontiers in Plant Science 13:1096645 doi: 10.3389/fpls.2022.1096645 |
| [103] |
Martínez-Esplá A, Zapata PJ, Valero D, Martínez-Romero D, Díaz-Mula HM, et al. 2018. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. Journal of the Science of Food and Agriculture 98:2742−50 doi: 10.1002/jsfa.8770 |
| [104] |
Zhu X, Chen Y, Li J, Ding X, Xiao S, et al. 2021. Exogenous 2,4-epibrassinolide treatment maintains the quality of Carambola fruit associated with enhanced antioxidant capacity and alternative respiratory metabolism. Frontiers in Plant Science 12:678295 doi: 10.3389/fpls.2021.678295 |
| [105] |
Zhu T, Tan WR, Deng XG, Zheng T, Zhang DW, et al. 2015. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology 100:196−204 doi: 10.1016/j.postharvbio.2014.09.016 |
| [106] |
Li XJ, Chen XJ, Guo X, Yin LL, Ahammed GJ, et al. 2016. DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal 14:1021−33 doi: 10.1111/pbi.12474 |
| [107] |
Ye SE, Li F, Li XB, Hong QB, Zhai YL, et al. 2015. Over-expression of GhDWF4 gene improved tomato fruit quality and accelerated fruit ripening. Journal of Integrative Agriculture 14:1980−91 doi: 10.1016/S2095-3119(15)61059-0 |
| [108] |
Sang K, Li J, Qian X, Yu J, Zhou Y, et al. 2022. The APETALA2a/DWARF/BRASSINAZOLE- RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits. The Plant Journal 112:1238−51 doi: 10.1111/tpj.16009 |
| [109] |
Hu S, Liu L, Li S, et al. 2020. Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Horticulture Research 7:163 doi: 10.1038/s41438-020-00383-0 |
| [110] |
Nie S, Huang S, Wang S, Cheng D, Liu J, et al. 2017. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Frontiers in Plant Science 8:1386 doi: 10.3389/fpls.2017.01386 |
| [111] |
Guo YF, Shan W, Liang SM, Wu CJ, Wei W, et al. 2019. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum 165:555−68 doi: 10.1111/ppl.12750 |
| [112] |
He Y, Liu H, Li H, Jin M, Wang X, et al. 2021. Transcription factors DkBZR1/2 regulate cell wall degradation genes and ethylene biosynthesis genes during persimmon fruit ripening. Journal of Experimental Botany 72:6437−46 doi: 10.1093/jxb/erab312 |