| [1] |
Wang DA, Zhang J, Cui S, Bie Z, Chen F, et al. 2024. The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives. Renewable and Sustainable Energy Reviews 189:113910 doi: 10.1016/j.rser.2023.113910 |
| [2] |
Niu S, Xu H, Sun Z, Shao ZY, Jian L. 2019. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies. Renewable and Sustainable Energy Reviews 114:109302 doi: 10.1016/j.rser.2019.109302 |
| [3] |
Wang DA, Zhang J, Cui S, Bie Z, Song K, et al. 2022. Modern advances in magnetic materials of wireless power transfer systems: a review and new perspectives. Nanomaterials 12:3662 doi: 10.3390/nano12203662 |
| [4] |
Xiong M, Wei X, Huang Y, Luo Z, Dai H. 2021. Research on novel flexible high-saturation nanocrystalline cores for wireless charging systems of electric vehicles. IEEE Transactions on Industrial Electronics 68:8310−20 doi: 10.1109/TIE.2020.3016259 |
| [5] |
Gaona DE, Jiang C, Long T. 2021. Highly efficient 11.1-kW wireless power transfer utilizing nanocrystalline ribbon cores. IEEE Transactions on Power Electronics 36:9955−69 doi: 10.1109/TPEL.2021.3064902 |
| [6] |
Wang Y, Jiang CQ, Chen C, Ma T, Li X, et al. 2024. Hybrid nanocrystalline ribbon core and flake ribbon for high-power inductive power transfer applications. IEEE Transactions on Power Electronics 39:1898−911 doi: 10.1109/TPEL.2023.3328036 |
| [7] |
Wang Y, Jiang CQ, Chen C, Wang X, Li X, et al. 2024. Design and analysis of inductive power transfer system using nanocrystalline flake ribbon core. IEEE Journal of Emerging and Selected Topics in Power Electronics 12:3334−47 doi: 10.1109/JESTPE.2024.3358857 |
| [8] |
Bie Z, Zhang J, Song K, Wang DA, Zhu C. 2022. A free-rotation asymmetric magnetic coupling structure of UAV wireless charging platform with conformal pickup. IEEE Transactions on Industrial Electronics 69:10154−61 doi: 10.1109/TIE.2022.3165297 |
| [9] |
Wang DA, Cui S, Zhang J, Bie Z, Song K, et al. 2022. A novel arc-shaped lightweight magnetic coupler for AUV wireless power transfer. IEEE Transactions on Industry Applications 58:1315−29 doi: 10.1109/TIA.2021.3109839 |
| [10] |
Wang DA, Chen F, Zhang J, Cui S, Bie Z, et al. 2023. A novel pendulum-type magnetic coupler with high misalignment tolerance for AUV underwater wireless power transfer systems. IEEE Transactions on Power Electronics 38:14861−71 doi: 10.1109/TPEL.2023.3313797 |
| [11] |
Chen C, Jiang C, Wang Y, Fan Y, Luo B, et al. 2024. Compact curved coupler with novel flexible nanocrystalline flake ribbon core for autonomous underwater vehicles. IEEE Transactions on Power Electronics 39:53−57 doi: 10.1109/TPEL.2023.3322466 |
| [12] |
Chen C, Zhang B, Ren S, Mo L, Guo W, et al. 2024. Thermal distribution optimization method for inductive power transfer system utilizing nanocrystalline flake ribbon core. IEEE Energy Conversion Congress and Exposition (ECCE), 2024. Phoenix, AZ, USA. USA : IEEE. pp. 1–6. doi: 10.1109/ECCE55643.2024.10861309 |
| [13] |
Xiang J, Jiang CQ, Ma T, Wang Y, Fan Y. 2024. An ultra-thin self-resonant coupler with nanocrystalline flake ribbons for wireless power transfer system. IEEE Transactions on Magnetics 60:8600805 doi: 10.1109/TMAG.2024.3429488 |
| [14] |
Xiang J, Jiang CQ, Ma T, Wang X, Fan Y, et al. 2024. High power density self-resonant coupler for flexible surface wireless power transfer system with nanocrystalline ribbon. IEEE Transactions on Power Electronics 39:13975−87 doi: 10.1109/TPEL.2024.3418556 |
| [15] |
Chen C, Jiang CQ, Ma T, Zhang B, Xiang J, et al. 2024. Core loss optimization for compact coupler via square crushed nanocrystalline flake ribbon core. IEEE Transactions on Power Electronics 39:9095−99 doi: 10.1109/TPEL.2024.3395473 |
| [16] |
Luo Z, Li X, Jiang C, Li Z, Long T. 2024. Permeability-adjustable nanocrystalline flake ribbon in customized high-frequency magnetic components. IEEE Transactions on Power Electronics 39:3477−85 doi: 10.1109/TPEL.2023.3341797 |
| [17] |
Li X, Luo Z, Shillaber L, Hu B, Jiang C, et al. 2023. Toroidal nanocrystalline powder core with trapezoidal cross section. 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers), 15−19 May 2023, Sendai, Japan. USA: IEEE. doi: 10.1109/INTERMAGShortPapers58606.2023.1022830 |
| [18] |
Zhang W, Yang Q, Li Y, Lin Z, Yang M, et al. 2022. Comprehensive analysis of nanocrystalline ribbon cores in high-power-density wireless power transfer pads for electric vehicles. IEEE Transactions on Magnetics 58:8700605 doi: 10.1109/TMAG.2021.3092173 |
| [19] |
Liu Y, Yue R, Li H, Wang C. 2020. Research of a novel hybrid shielding structure for inductive power transfer system. 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020, Nanjing, China. USA: IEEE. pp. 991–94. doi: 10.1109/IPEMC-ECCEAsia48364.2020.9367990 |
| [20] |
Xu H, Li H, Wang C. 2019. Design of magnetic shielding structure for wireless charging coupler. 2019 IEEE Wireless Power Transfer Conference (WPTC), 2020, London, UK. USA: IEEE. pp. 94–97. doi: 10.1109/WPTC45513.2019.9055580 |
| [21] |
Wang Y, Jiang CQ, Mo L, Wang X, Guo W, et al. 2024. Design and analysis of a multi-segment multi-permeability core for EV wireless charging with enhanced efficiency and thermal performances. Applied Energy 375:124181 doi: 10.1016/j.apenergy.2024.124181 |
| [22] |
Wang Y, Jiang CQ, Wang X, Mo L, Guo W, et al. 2025. Laminated cores in inductive power transfer: a viaduct structure for balanced flux and minimal shielding loss. IEEE Transactions on Power Electronics 40:6464−69 doi: 10.1109/TPEL.2025.3533697 |
| [23] |
Wang DA, Cui S, Zhang J, Bie Z, Lu R, et al. 2024. A novel diagonal-laminated fe-based nanocrystalline ribbon core structure in wireless power transfer systems. 2024 IEEE 7th Student Conference on Electric Machines and Systems (SCEMS), 2024, Macao, China. USA: IEEE. pp. 1–6. doi: 10.1109/SCEMS63294.2024.10756367 |
| [24] |
Li Z, Lin Z, Yang P, Yi J, Huang S. 2022. Calculation of the coupling coefficient of an arbitrarily positioned circular coil for wireless power transfer system with a double-layered finite magnetic shield. Transactions of China Electrotechnical Society 37:6306−18 doi: 10.19595/j.cnki.1000-6753.tces.220478 |
| [25] |
Liu J, Deng Q, Czarkowski D, Kazimierczuk MK, Zhou H, et al. 2019. Frequency optimization for inductive power transfer based on AC resistance evaluation in litz-wire coil. IEEE Transactions on Power Electronics 34:2355−63 doi: 10.1109/TPEL.2018.2839626 |
| [26] |
Wang Y, Calderon-Lopez G, Forsyth AJ. 2017. High-frequency gap losses in nanocrystalline cores. IEEE Transactions on Power Electronics 32:4683−90 doi: 10.1109/TPEL.2016.2594083 |
| [27] |
Dai Z, Zhang X, Liu T, Pei C, Chen T, et al. 2023. Magnetic coupling mechanism with omnidirectional magnetic shielding for wireless power transfer. IEEE Transactions on Electromagnetic Compatibility 65:1565−74 doi: 10.1109/TEMC.2023.3266089 |
| [28] |
Kim J, Kim J, Kong S, Kim H, Suh IS, et al. 2013. Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proceedings of the IEEE 101:1332−42 doi: 10.1109/JPROC.2013.2247551 |
| [29] |
Qin R, Li J, Sun J, Costinett D. 2023. Shielding design for high-frequency wireless power transfer system for EV charging with self-resonant coils. IEEE Transactions on Power Electronics 38:7900−9 doi: 10.1109/TPEL.2023.3251990 |
| [30] |
Johnk CTA. 1975. Engineering electromagnetic fields and waves. New York: John Wiley |
| [31] |
Moser JR. 1967. Low-frequency shielding of a circular loop electromagnetic field source. IEEE Transactions on Electromagnetic Compatibility 9:6−18 doi: 10.1109/TEMC.1967.4307447 |
| [32] |
Burke SK, Ibrahim ME. 2004. Mutual impedance of air-cored coils above a conducting plate. Journal of Physics D: Applied Physics 37:1857 doi: 10.1088/0022-3727/37/13/021 |
| [33] |
Acero J, Carretero C, Lope I, Alonso R, Lucia Ó, et al. 2013. Analysis of the mutual inductance of planar-lumped inductive power transfer systems. IEEE Transactions on Industrial Electronics 60:410−20 doi: 10.1109/TIE.2011.2164772 |
| [34] |
Liu J, Mei Y, Lu S, Li X, Lu GQ. 2020. Continuously variable multi-permeability inductor for improving the efficiency of high-frequency DC–DC converter. IEEE Transactions on Power Electronics 35:826−34 doi: 10.1109/TPEL.2019.2907770 |