| [1] |
Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, et al. 2016. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5):1036−42 doi: 10.1016/j.ophtha.2016.01.006 |
| [2] |
Foster PJ, Jiang Y. 2014. Epidemiology of myopia. Eye 28(2):202−8 doi: 10.1038/eye.2013.280 |
| [3] |
Morgan IG, French AN, Ashby RS, Guo X, Ding X, et al. 2018. The epidemics of myopia: aetiology and prevention. Progress in Retinal and Eye Research 62:134−49 doi: 10.1016/j.preteyeres.2017.09.004 |
| [4] |
Morgan IG, Ohno-Matsui K, Saw SM. 2012. Myopia. Lancet 379:1739−48 doi: 10.1016/S0140-6736(12)60272-4 |
| [5] |
Dong L, Kang YK, Li Y, Wei WB, Jonas JB. 2020. Prevalence and time trends of myopia in children and adolescents in China: a systemic review and meta-analysis. Retina 40(3):399−411 doi: 10.1097/IAE.0000000000002590 |
| [6] |
Ikuno Y. 2017. Overview of the Complications of High Myopia. Retina 37(12):2347−51 doi: 10.1097/IAE.0000000000001489 |
| [7] |
Masarwa D, Mimouni M, Aloni E, Kaiserman I. 2024. Tomographic Predictors of Ectasia Development After Keratorefractive Surgery. Cornea 43(5):545−51 doi: 10.1097/ICO.0000000000003465 |
| [8] |
Ohno-Matsui K, Lai TY, Lai CC, Cheung CM. 2016. Updates of pathologic myopia. Progress in Retinal and Eye Research 52:156−87 doi: 10.1016/j.preteyeres.2015.12.001 |
| [9] |
Kim TI, Alió Del Barrio JL, Wilkins M, Cochener B, Ang M. 2019. Refractive surgery. Lancet 393(10185):2085−98 doi: 10.1016/S0140-6736(18)33209-4 |
| [10] |
Cakir I, Sonmez O, Pehlivanoglu S, Cakir GY, Yildiz BK, et al. 2023. Long-term results of a new posterior chamber phakic intraocular lens in patients with high myopia: 5-year results. Journal of Cataract and Refractive Surgery 49(4):409−15 doi: 10.1097/j.jcrs.0000000000001110 |
| [11] |
Torun N, Bertelmann E, Klamann MK, Maier AK, Liekfeld A, et al. 2013. Posterior chamber phakic intraocular lens to correct myopia: long-term follow-up. Journal of Cataract and Refractive Surgery 39(7):1023−28 doi: 10.1016/j.jcrs.2013.01.041 |
| [12] |
Eleftheriadis H, Amoros S, Bilbao R, Teijeiro MA. 2004. Spontaneous dislocation of a phakic refractive lens into the vitreous cavity. Journal of Cataract & Refractive Surgery 30(9):2013−16 doi: 10.1016/j.jcrs.2004.04.060 |
| [13] |
Ma M, Xiao Q, Wang A, Zheng Z. 2023. A posterior chamber phakic refractive lens dislocated into the vitreous. European Journal of Ophthalmology 33(5):NP21−NP24 doi: 10.1177/11206721221135911 |
| [14] |
Pérez-Cambrodí RJ, Piñero DP, Ferrer-Blasco T, Cerviño A, Brautaset R. 2013. The posterior chamber phakic refractive lens (PRL): a review. Eye 27(1):14−21 doi: 10.1038/eye.2012.235 |
| [15] |
Wang X, Chen X, Tang Y, Wang J, Chen Y, et al. 2020. Morphologicfeatures of crystalline lens in patients with primary angle closure diseaseobserved by CASIA 2 optical coherence tomography. InvestigativeOphthalmology & Visual Science 61(5):40 doi: 10.1167/iovs.61.5.40 |
| [16] |
Niu L, Zhang Z, Miao H, Zhao J, Li M, et al. 2022. Effects of tilt and decentration of Visian Implantable Collamer Lens (ICL V4c) on visual quality: an observational study. BMC Ophthalmology 22(1):294 doi: 10.1186/s12886-022-02499-4 |
| [17] |
Koivula A, Kugelberg M. 2007. Optical coherence tomography of the anterior segment in eyes with phakic refractive lenses. Ophthalmology 114(11):2031−37 doi: 10.1016/j.ophtha.2007.06.020 |
| [18] |
Gonvers M, Bornet C, Othenin-Girard P. 2003. Implantable contact lens for moderate to high myopia: relationship of vaulting to cataract formation. Journal of Cataract & Refractive Surgery 29(5):918−24 doi: 10.1016/S0886-3350(03)00065-8 |
| [19] |
Montés-Micó R, Pastor-Pascual F, Artiaga-Elordi E, Ruiz-Mesa R, Tañá-Rivero P. 2021. In vivo optical quality of posterior-chamber phakic implantable collamer lenses with a central port. Eye and Vision 8(1):30 doi: 10.1186/s40662-021-00251-5 |
| [20] |
Reinstein DZ, Archer TJ, Vida RS, Piparia V, Potter JG. 2022. New sizing parameters and model for predicting postoperative vault for the implantable collamer lens posterior chamber phakic intraocular lens. Journal of Refractive Surgery 38(5):272−79 doi: 10.3928/1081597X-20220302-01 |
| [21] |
Zhang X, Chen X, Wang X, Yuan F, Zhou X. 2018. Analysis of intraocular positions of posterior implantable collamer lens by full-scale ultrasound biomicroscopy. BMC Ophthalmology 18(1):114 doi: 10.1186/s12886-018-0783-5 |
| [22] |
Li L, Zhang B, Wang Z. 2022. Comparison of accommodation and accommodative micro-fluctuation after implantable collamer lens and LASIK surgery for myopia. BMC Ophthalmology 22(1):8 doi: 10.1186/s12886-021-02217-6 |
| [23] |
Schmidinger G, Lackner B, Pieh S, Skorpik C. 2010. Long-term changes in posterior chamber phakic intraocular collamer lens vaulting in myopic patients. Ophthalmology 117(8):1506−11 doi: 10.1016/j.ophtha.2009.12.013 |
| [24] |
Sheppard AL, Davies LN. 2010. In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Investigative Ophthalmology & Visual Science 51(12):6882−89 doi: 10.1167/iovs.10-5787 |
| [25] |
Niu L, Zhang Z, Miao H, Zhao J, Wang X, et al. 2022. Effects of lighting conditions and accommodation on the three-dimensional position of Visian implantable collamer lens. Eye and Vision 9(1):42 doi: 10.1186/s40662-022-00313-2 |
| [26] |
Nakamura T, Isogai N, Kojima T, Yoshida Y, Sugiyama Y. 2018. Implantable Collamer Lens Sizing Method Based on Swept-Source Anterior Segment Optical Coherence Tomography. American Journal of Ophthalmology 187:99−107 doi: 10.1016/j.ajo.2017.12.015 |
| [27] |
Nakamura T, Isogai N, Kojima T, Yoshida Y, Sugiyama Y. 2020. Optimization of implantable collamer lens sizing based on swept-source anterior segment optical coherence tomography. Journal of Cataract and Refractive Surgery 46(5):742−48 doi: 10.1097/j.jcrs.0000000000000134 |
| [28] |
Huang W, Gao X, Li X, Wang J, Chen S, et al. 2015. Anterior and posterior ocular biometry in healthy Chinese subjects: data based on AS-OCT and SS-OCT. PLoS One 10(3):e0121740 doi: 10.1371/journal.pone.0121740 |
| [29] |
Miao A, Tang Y, Zhu X, Qian D, Zheng T, et al. 2022. Associations between anterior segment biometry and high axial myopia in 3438 cataractous eyes in the Chinese population. BMC Ophthalmology 22(1):71 doi: 10.1186/s12886-022-02300-6 |
| [30] |
Chen X, Shen Y, Jiang Y, Cheng M, Lei Y, et al. 2023. Predicting vault and size of posterior chamber phakic intraocular lens using sulcus to sulcus-optimized artificial intelligence technology. American Journal of Ophthalmology 255:87−97 doi: 10.1016/j.ajo.2023.06.024 |
| [31] |
Zong Y, Xu Q, Jiang C, Zhu H, Yu J, et al. 2017. Measurement of and factors associated with the anterior chamber volume in healthy Chinese adults. Journal of Ophthalmology 2017:6762047 doi: 10.1155/2017/6762047 |
| [32] |
Kao BW, Yonamine S, Zhao M, Oatts J, Yu Y, et al. 2022. Relationship between optical coherence tomography and anterior chamber depth after pupillary dilation in primary angle closure suspects. Journal of Glaucoma 31(11):915−19 doi: 10.1097/IJG.0000000000002085 |
| [33] |
Pérez-Cambrodí RJ, Blanes-Mompó FJ, Piñero Llorens DP, Cerviño A. 2011. Clinical impact of a spontaneous decentration of a phakic refractive lens. Optometry and Vision Science 88(11):E1375−E1379 doi: 10.1097/OPX.0b013e318229636e |
| [34] |
Petternel V, Köppl CM, Dejaco-Ruhswurm I, Findl O, Skorpik C, et al. 2004. Effect of accommodation and pupil size on the movement of a posterior chamber lens in the phakic eye. Ophthalmology 111(2):325−31 doi: 10.1016/j.ophtha.2003.05.013 |
| [35] |
Chun YS, Park IK, Lee HI, Lee JH, Kim JC. 2006. Iris and trabecular meshwork pigment changes after posterior chamber phakic intraocular lens implantation. Journal of Cataract & Refractive Surgery 32(9):1452−58 doi: 10.1016/j.jcrs.2006.04.023 |