[1]

Stewart WM, Dibb DW, Johnston AE, Smyth TJ. 2005. The contribution of commercial fertilizer nutrients to food production. Agronomy Journal 97:1−6

doi: 10.2134/agronj2005.0001
[2]

Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1:636−39

doi: 10.1038/ngeo325
[3]

Cassman KG, Dobermann A, Walters DT. 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132−40

doi: 10.1579/0044-7447-31.2.132
[4]

Gomiero T, Pimentel D, Paoletti MG. 2011. Environmental impact of different agricultural management practices: conventional vs organic agriculture. Critical Reviews in Plant Sciences 30:95−124

doi: 10.1080/07352689.2011.554355
[5]

Hirel B, Tétu T, Lea PJ, Dubois F. 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452−85

doi: 10.3390/su3091452
[6]

Khoddami A, Messina V, Vadabalija Venkata K, Farahnaky A, Blanchard CL, et al. 2023. Sorghum in foods: Functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition 63:1170−86

doi: 10.1080/10408398.2021.1960793
[7]

Ceccarelli S. 1996. Adaptation to low/high input cultivation. Euphytica 92:203−14

doi: 10.1007/BF00022846
[8]

Xu G, Lyu J, Obata T, Liu S, Ge Y, et al. 2022. A historically balanced locus under recent directional selection in responding to changed nitrogen conditions during modern maize breeding. bioRxiv Preprint

doi: 10.1101/2022.02.09.479784
[9]

Gardner JC, Maranville JW, Paparozzi ET. 1994. Nitrogen use efficiency among diverse sorghum cultivars. Crop Science 34:111

doi: 10.2135/cropsci1994.0011183X003400030023x
[10]

Zhao D, Reddy KR, Kakani VG, Reddy VR. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22:391−403

doi: 10.1016/j.eja.2004.06.005
[11]

Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP, et al. 2016. Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biology 16:16

doi: 10.1186/s12870-015-0696-x
[12]

Grzybowski MW, Zwiener M, Jin H, Wijewardane NK, Atefi A, et al. 2022. Variation in morpho-physiological and metabolic responses to low nitrogen stress across the sorghum association panel. BMC Plant Biology 22:433

doi: 10.1186/s12870-022-03823-2
[13]

Ostmeyer TJ, Bahuguna RN, Kirkham MB, Bean S, Krishna Jagadish SV. 2022. Enhancing sorghum yield through efficient use of nitrogen–challenges and opportunities. Frontiers in Plant Science 13:845443

doi: 10.3389/fpls.2022.845443
[14]

Novoa R, Loomis RS. 1981. Nitrogen and plant production. Plant and Soil 58:177−204

doi: 10.1007/BF02180053
[15]

Li D, Tian M, Cai J, Jiang D, Cao W, et al. 2013. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation 70:257−63

doi: 10.1007/s10725-013-9797-4
[16]

Sukegawa S, Saika H, Toki S. 2021. Plant genome editing: ever more precise and wide reaching. The Plant Journal 106:1208−18

doi: 10.1111/tpj.15233
[17]

Liang R, He Z, Zhao KT, Zhu H, Hu J, et al. 2024. Prime editing using CRISPR-Cas12a and circular RNAs in human cells. Nature Biotechnology 42:1867−75

doi: 10.1038/s41587-023-02095-x
[18]

Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG. 2013. Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. PLoS One 8:e65816

doi: 10.1371/journal.pone.0065816
[19]

Li L, Zhang Q, Huang D. 2014. A review of imaging techniques for plant phenotyping. Sensors 14:20078−111

doi: 10.3390/s141120078
[20]

Prashar A, Jones HG. 2014. Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4:397−417

doi: 10.3390/agronomy4030397
[21]

Pineda M, Barón M, Pérez-Bueno ML. 2021. Thermal imaging for plant stress detection and phenotyping. Remote Sensing 13:68

doi: 10.3390/rs13010068
[22]

Grzybowski M, Wijewardane NK, Atefi A, Ge Y, Schnable JC. 2021. Hyperspectral reflectance-based phenotyping for quantitative genetics in crops: Progress and challenges. Plant Communications 2:100209

doi: 10.1016/j.xplc.2021.100209
[23]

Sarić R, Nguyen VD, Burge T, Berkowitz O, Trtílek M, et al. 2022. Applications of hyperspectral imaging in plant phenotyping. Trends in Plant Science 27:301−15

doi: 10.1016/j.tplants.2021.12.003
[24]

Tilly N, Bareth G. 2019. Estimating nitrogen from structural crop traits at field scale—a novel approach versus spectral vegetation indices. Remote Sensing 11:2066

doi: 10.3390/rs11172066
[25]

Thapa K, Zhang J, Bai GF, Ge Y. 2022. Characterization of maize responses to differential nitrogen rates using image-based phenotyping. Authorea Preprint

doi: 10.22541/au.166497112.24149882/v1
[26]

Adak A, Murray SC, Anderson SL, Popescu SC, Malambo L, et al. 2021. Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize. The Plant Genome 14:e20102

doi: 10.1002/tpg2.20102
[27]

Rodene E, Xu G, Palali Delen S, Zhao X, Smith C, et al. 2022. A UAV-based high-throughput phenotyping approach to assess time-series nitrogen responses and identify trait-associated genetic components in maize. The Plant Phenome Journal 5:e20030

doi: 10.1002/ppj2.20030
[28]

Xu Y, Qiu Y, Schnable JC. 2018. Functional modeling of plant growth dynamics. The Plant Phenome Journal 1:170007

doi: 10.2135/tppj2017.09.0007
[29]

Wang R, Qiu Y, Zhou Y, Liang Z, Schnable JC. 2020. A high-throughput phenotyping pipeline for image processing and functional growth curve analysis. Plant Phenomics 2020:7481687

doi: 10.34133/2020/7481687
[30]

Miao C, Xu Y, Liu S, Schnable PS, Schnable JC. 2020. Increased power and accuracy of causal locus identification in time series genome-wide association in sorghum. Plant Physiology 183:1898−909

doi: 10.1104/pp.20.00277
[31]

Adak A, Murray SC, Washburn JD. 2024. Deciphering temporal growth patterns in maize: integrative modeling of phenotype dynamics and underlying genomic variations. New Phytologist 242:121−36

doi: 10.1111/nph.19575
[32]

Gage JL, Richards E, Lepak N, Kaczmar N, Soman C, et al. 2019. In-field whole-plant maize architecture characterized by subcanopy rovers and latent space phenotyping. The Plant Phenome Journal 2:190011

doi: 10.2135/tppj2019.07.0011
[33]

Ubbens J, Cieslak M, Prusinkiewicz P, Parkin I, Ebersbach J, et al. 2020. Latent space phenotyping: automatic image-based phenotyping for treatment studies. Plant Phenomics 2020:5801869

doi: 10.34133/2020/5801869
[34]

Tross MC, Grzybowski MW, Jubery TZ, Grove RJ, Nishimwe AV, et al. 2024. Data driven discovery and quantification of hyperspectral leaf reflectance phenotypes across a maize diversity panel. The Plant Phenome Journal 7:e20106

doi: 10.1002/ppj2.20106
[35]

Sreedasyam A, Plott C, Hossain MS, Lovell JT, Grimwood J, et al. 2023. JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant Kingdom. Nucleic Acids Research 51:8383−401

doi: 10.1093/nar/gkad616
[36]

Bradski G. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools 120:122−25

[37]

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9:62−66

doi: 10.1109/TSMC.1979.4310076
[38]

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17:261−72

doi: 10.1038/s41592-019-0686-2
[39]

Kumar T, Howe A, Sato S, Dweikat I, Clemente T. 2012. Sorghum transformation: overview and utility. In Genomics of the Saccharinae, ed. Paterson A. vol. 11. New York, NY: Springer. pp. 205−21. doi: 10.1007/978-1-4419-5947-8_10

[40]

Zwiener M. 2021. Phenotypic Plasticity of Diverse Sorghum Varieties in Response to Nitrogen Deficit Stress. Master's thesis. University of Nebraska-Lincoln. https://digitalcommons.unl.edu/agronhortdiss/214/

[41]

Serra J. 1983. Image analysis and mathematical morphology. Academic Press, Inc

[42]

Ge Y, Bai G, Stoerger V, Schnable JC. 2016. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture 127:625−32

doi: 10.1016/j.compag.2016.07.028
[43]

Mu Q, Guo T, Li X, Yu J. 2022. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. New Phytologist 233:1768−79

doi: 10.1111/nph.17904
[44]

Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE 38:259−69

doi: 10.13031/2013.27838
[45]

Fan Y, Feng H, Jin X, Yue J, Liu Y, et al. 2022. Estimation of the nitrogen content of potato plants based on morphological parameters and visible light vegetation indices. Frontiers in Plant Science 13:1012070

doi: 10.3389/fpls.2022.1012070
[46]

Gée C, Denimal E, de Yparraguirre M, Dujourdy L, Voisin AS. 2023. Assessment of nitrogen nutrition index of winter wheat canopy from visible images for a dynamic monitoring of N requirements. Remote Sensing 15:2510

doi: 10.3390/rs15102510
[47]

Barker AV, Volk RJ. 1964. Determination of ammonium, amide, amino, and nitrate nitrogen in plant extracts by a modified Kjeldahl method. Analytical Chemistry 36:439−41

doi: 10.1021/ac60208a067
[48]

Vanderlip RL, Reeves HE. 1972. Growth stages of sorghum [sorghum bicolor, (L.) moench. Agronomy Journal 64:13−16

doi: 10.2134/agronj1972.00021962006400010005x
[49]

Yuan S, Zhang ZW, Zheng C, Zhao ZY, Wang Y, et al. 2016. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences of the United States of America 113:7661−66

doi: 10.1073/pnas.1602004113
[50]

Wang Y, Yao Q, Zhang Y, Zhang Y, Xing J, et al. 2020. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability. International Journal of Molecular Sciences 21:1824

doi: 10.3390/ijms21051824
[51]

Coley PD, Bryant JP, Chapin FS III. 1985. Resource availability and plant antiherbivore defense. Science 230:895−99

doi: 10.1126/science.230.4728.895
[52]

Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. The quarterly review biology 67:283−335

doi: 10.1086/417659
[53]

Huot B, Yao J, Montgomery BL, He SY. 2014. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant 7:1267−87

doi: 10.1093/mp/ssu049
[54]

Anderson SL II, Murray SC, Chen Y, Malambo L, Chang A, et al. 2020. Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci. Plant Direct 4:e00223

doi: 10.1002/pld3.223