| [1] |
Zhang SY, Chen AL, Li Q. 2012. Novel benzofuran constituent from the husk of Carya cathayensis Sarg. Phytochemistry Letters 5:473−75 doi: 10.1016/j.phytol.2012.04.008 |
| [2] |
Fu X, Belwal T, He Y, Xu Y, Li L, et al. 2022. UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels: composition, extraction mechanism and in vitro biological activities. Food Chemistry 370:131042 doi: 10.1016/j.foodchem.2021.131042 |
| [3] |
Gowd V, Karim N, Shishir MRI, Xie L, Chen W. 2019. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology 93:81−93 doi: 10.1016/j.jpgs.2019.09.005 |
| [4] |
Cai R, Yuan Y, Cui L, Wang Z, Yue T. 2018. Cyclodextrin-assisted extraction of phenolic compounds: current research and future prospects. Trends in Food Science & Technology 79:19−27 doi: 10.1016/j.jpgs.2018.06.015 |
| [5] |
Ren Z, Yang H, Zhu C, Fan D, Deng J. 2023. Dietary phytochemicals: as a potential natural source for treatment of Alzheimer's disease. Food Innovation and Advances 2:36−43 doi: 10.48130/FIA-2023-0007 |
| [6] |
Zamuz S, Munekata PES, Dzuvor CKO, Zhang W, Sant'Ana AS, et al. 2021. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends in Food Science & Technology 110:385−92 doi: 10.1016/j.jpgs.2021.01.068 |
| [7] |
Guan H, Zhang W, Sun-Waterhouse D, Jiang Y, Li F, et al. 2021. Phenolic-protein interactions in foods and post ingestion: switches empowering health outcomes. Trends in Food Science & Technology 118:71−86 doi: 10.1016/j.jpgs.2021.08.033 |
| [8] |
Roasa J, De Villa R, Mine Y, Tsao R. 2021. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: a review. Trends in Food Science & Technology 116:954−74 doi: 10.1016/j.jpgs.2021.08.027 |
| [9] |
Fu X, Wang D, Belwal T, Xu Y, Li L, Luo Z. 2021. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chemistry 355:129577 doi: 10.1016/j.foodchem.2021.129577 |
| [10] |
Mwangi WW, Lim HP, Low LE, Tey BT, Chan ES. 2020. Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science & Technology 100:320−32 doi: 10.1016/j.jpgs.2020.04.020 |
| [11] |
Cui F, Zhao S, Guan X, McClements DJ, Liu X, et al. 2021. Polysaccharide-based Pickering emulsions: formation, stabilization and applications. Food Hydrocolloids 119:106812 doi: 10.1016/j.foodhyd.2021.106812 |
| [12] |
Zhang R, Li L, Ma C, Ettoumi FE, Javed M, et al. 2022. Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization. Sustainable Chemistry and Pharmacy 25:100565 doi: 10.1016/j.scp.2021.100565 |
| [13] |
Heidari F, Jafari SM, Ziaiifar AM, Malekjani N. 2022. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Advances in Colloid and Interface Science 299:102567 doi: 10.1016/j.cis.2021.102567 |
| [14] |
Pizones Ruiz-Henestrosa VM, Ribourg L, Kermarrec A, Anton M, Pilosof A, et al. 2022. Emulsifiers modulate the extent of gastric lipolysis during the dynamic in vitro digestion of submicron chia oil/water emulsions with limited impact on the final extent of intestinal lipolysis. Food Hydrocolloids 124:107336 doi: 10.1016/j.foodhyd.2021.107336 |
| [15] |
Yan X, Ma C, Cui F, McClements DJ, Liu X, et al. 2020. Protein-stabilized Pickering emulsions: formation, stability, properties, and applications in foods. Trends in Food Science & Technology 103:293−303 doi: 10.1016/j.jpgs.2020.07.005 |
| [16] |
Yin X, Dong H, Cheng H, Ji C, Liang L. 2022. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocolloids 124:107308 doi: 10.1016/j.foodhyd.2021.107308 |
| [17] |
Xiao Y, Ahmad T, Belwal T, Aadil RM, Siddique M, et al. 2023. A review on protein based nanocarriers for polyphenols: interaction and stabilization mechanisms. Food Innovation and Advances 2:193−202 doi: 10.48130/FIA-2023-0021 |
| [18] |
Assadpour E, Jafari SM, Maghsoudlou Y. 2017. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. International Journal of Biological Macromolecules 95:238−47 doi: 10.1016/j.ijbiomac.2016.11.023 |
| [19] |
Joye IJ, McClements DJ. 2014. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science 19:417−27 doi: 10.1016/j.cocis.2014.07.00 |
| [20] |
Ribeiro EF, Morell P, Nicoletti VR, Quiles A, Hernando I. 2021. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocolloids 119:106839 doi: 10.1016/j.foodhyd.2021.106839 |
| [21] |
Albano KM, Cavallieri ÂLF, Nicoletti VR. 2019. Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization. Food Reviews International 35:54−89 doi: 10.1080/87559129.2018.1467442 |
| [22] |
Raei M, Rafe A, Shahidi F. 2018. Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering 228:25−31 doi: 10.1016/j.jfoodeng.2018.02.007 |
| [23] |
Bettani SR, de Oliveira Ragazzo G, Leal Santos N, Kieckbusch TG, Gaspar Bastos R, et al. 2019. Sugarcane vinasse and microalgal biomass in the production of pectin particles as an alternative soil fertilizer. Carbohydrate Polymers 203:322−30 doi: 10.1016/j.carbpol.2018.09.041 |
| [24] |
Giacomazza D, Sabatino MA, Catena A, Leone M, San Biagio PL, et al. 2014. Maltose-conjugated chitosans induce macroscopic gelation of pectin solutions at neutral pH. Carbohydrate Polymers 114:141−48 doi: 10.1016/j.carbpol.2014.08.014 |
| [25] |
Huang H, Belwal T, Aalim H, Li L, Lin X, et al. 2019. Protein-polysaccharide complex coated W/O/W emulsion as secondary microcapsule for hydrophilic arbutin and hydrophobic coumaric acid. Food Chemistry 300:125171 doi: 10.1016/j.foodchem.2019.125171 |
| [26] |
Hasanvand E, Rafe A. 2018. Characterization of Flaxseed Gum/Rice Bran Protein Complex Coacervates. Food Biophysics 13:387−95 doi: 10.1007/s11483-018-9544-5 |
| [27] |
Hasanvand E, Rafe A, Emadzadeh B. 2018. Phase separation behavior of flaxseed gum and rice bran protein complex coacervates. Food Hydrocolloids 82:412−23 doi: 10.1016/j.foodhyd.2018.04.015 |
| [28] |
Huang H, Belwal T, Liu S, Duan Z, Luo Z. 2019. Novel multi-phase nano-emulsion preparation for co-loading hydrophilic arbutin and hydrophobic coumaric acid using hydrocolloids. Food Hydrocolloids 93:92−101 doi: 10.1016/j.foodhyd.2019.02.023 |
| [29] |
Aditya NP, Aditya S, Yang HJ, Kim HW, Park SO, et al. 2015. Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application. Journal of Functional Foods 15:35−43 doi: 10.1016/j.jff.2015.03.013 |
| [30] |
Huang GQ, Sun YT, Xiao JX, Yang J. 2012. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry 135:534−39 doi: 10.1016/j.foodchem.2012.04.140 |
| [31] |
Wu C, Li Y, Du Y, Wang L, Tong C, et al. 2019. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids 89:682−90 doi: 10.1016/j.foodhyd.2018.11.001 |
| [32] |
Huang H, Belwal T, Li L, Xu Y, Zou L, et al. 2021. Amphiphilic and biocompatible DNA origami-based emulsion formation and nanopore release for anti-melanogenesis therapy. Small 17:e2104831 doi: 10.1002/smll.202104831 |
| [33] |
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, et al. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19−25 doi: 10.1016/j.softx.2015.06.001 |
| [34] |
Lu T, Chen F. 2012. Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry 33:580−92 doi: 10.1002/jcc.22885 |
| [35] |
Martínez L, Andrade R, Birgin EG, Martínez JM. 2009. PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry 30:2157−64 doi: 10.1002/jcc.21224 |
| [36] |
Martínez JM, Martínez L. 2003. Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking. Journal of Computational Chemistry 24:819−25 doi: 10.1002/jcc.10216 |
| [37] |
Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, et al. 2010. Revealing Noncovalent Interactions. Journal of the American Chemical Society 132:6498−506 doi: 10.1021/ja100936w |
| [38] |
Albano KM, Nicoletti VR. 2018. Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics Sonochemistry 41:562−71 doi: 10.1016/j.ultsonch.2017.10.018 |
| [39] |
Pirestani S, Nasirpour A, Keramat J, Desobry S, Jasniewski J. 2018. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system. Food Hydrocolloids 79:228−34 doi: 10.1016/j.foodhyd.2018.01.001 |
| [40] |
Zhu XF, Zhang N, Lin WF, Tang CH. 2017. Freeze-thaw stability of pickering emulsions stabilized by soy and whey protein particles. Food Hydrocolloids 69:173−84 doi: 10.1016/j.foodhyd.2017.02.001 |
| [41] |
Clausse D, Lanoisellé JL, Pezron I, Saleh K. 2018. Formulation of a water-in-oil emulsion encapsulating polysaccharides to improve the efficiency of spraying of plant protection products. Colloids and Surfaces A: Physicochemical and Engineering Aspects 536:96−103 doi: 10.1016/j.colsurfa.2017.07.032 |
| [42] |
Gao S, Yang M, Luo Z, Ban Z, Pan Y, et al. 2022. Soy protein/chitosan-based microsphere as stable biocompatible vehicles of oleanolic acid: an emerging alternative enabling the quality maintenance of minimally processed produce. Food Hydrocolloids 124:107325 doi: 10.1016/j.foodhyd.2021.107325 |
| [43] |
Saari H, Wahlgren M, Rayner M, Sjöö M, Matos M. 2019. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLoS One 14:e0210690 doi: 10.1371/journal.pone.0210690 |
| [44] |
Li JM, Nie SP. 2016. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids 53:46−61 doi: 10.1016/j.foodhyd.2015.01.035 |
| [45] |
Gong J, Wang L, Wu J, Yuan Y, Mu R-J, et al. 2019. The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth. LWT 100:271−77 doi: 10.1016/j.lwt.2018.10.080 |
| [46] |
Wang X, Li X, Xu D, Zhu Y, Cao Y, et al. 2019. Modulation of stability, rheological properties, and microstructure of heteroaggregated emulsion: Influence of oil content. LWT 109:457−66 doi: 10.1016/j.lwt.2019.04.031 |
| [47] |
Lu W, Zheng B, Miao S. 2018. Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan. Food Hydrocolloids 81:120−28 doi: 10.1016/j.foodhyd.2018.02.034 |
| [48] |
Albano KM, Franco CML, Telis VRN. 2014. Rheological behavior of Peruvian carrot starch gels as affected by temperature and concentration. Food Hydrocolloids 40:30−43 doi: 10.1016/j.foodhyd.2014.02.003 |
| [49] |
Choi YR, Chang YH. 2018. Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocolloids 85:222−28 doi: 10.1016/j.foodhyd.2018.07.022 |
| [50] |
Setiowati AD, Wijaya W, Van der Meeren P. 2020. Whey protein-polysaccharide conjugates obtained via dry heat treatment to improve the heat stability of whey protein stabilized emulsions. Trends in Food Science & Technology 98:150−61 doi: 10.1016/j.jpgs.2020.02.011 |
| [51] |
Consoli L, Dias RAO, Rabelo RS, Furtado GF, Sussulini A, et al. 2018. Sodium caseinate-corn starch hydrolysates conjugates obtained through the Maillard reaction as stabilizing agents in resveratrol-loaded emulsions. Food Hydrocolloids 84:458−72 doi: 10.1016/j.foodhyd.2018.06.017 |
| [52] |
Meng J, Kang TT, Wang HF, Zhao BB, Lu RR. 2018. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating. International Journal of Biological Macromolecules 107:2604−10 doi: 10.1016/j.ijbiomac.2017.10.140 |
| [53] |
Wagoner TB, Foegeding EA. 2017. Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids 63:130−38 doi: 10.1016/j.foodhyd.2016.08.027 |
| [54] |
Pirestani S, Nasirpour A, Keramat J, Desobry S, Jasniewski J. 2017. Effect of glycosylation with gum Arabic by Maillard reaction in a liquid system on the emulsifying properties of canola protein isolate. Carbohydrate Polymers 157:1620−27 doi: 10.1016/j.carbpol.2016.11.044 |
| [55] |
Xing C, Cui WQ, Zhang Y, Zou XS, Hao JY, et al. 2022. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: optimization, extraction mechanism and in vitro bioactivities. Ultrasonics Sonochemistry 83:105946 doi: 10.1016/j.ultsonch.2022.105946 |