[1]

Zhao L, Liu Y, Chen X, Zhang X, Liao L, et al. 2023. Visible light induces the PpHYH transcription to promote anthocyanin pigmentation in peach peel. Fruit Research 3:25

doi: 10.48130/FruRes-2023-0025
[2]

Liu R, Wang Y, Shu B, Xin J, Yu B, et al. 2025. SmHSFA8 enhances the heat tolerance of eggplant by regulating the SmEGY3‐SmCSD1 module and promoting SmF3H‐mediated flavonoid biosynthesis. Plant, Cell & Environment 48:3085−104

doi: 10.1111/pce.15339
[3]

Dai M, Kang X, Wang Y, Huang S, Guo Y, et al. 2022. Functional characterization of flavanone 3-hydroxylase (F3H) and its role in anthocyanin and flavonoid biosynthesis in mulberry. Molecules 27:3341

doi: 10.3390/molecules27103341
[4]

Ma G, Zhang L, Yamamoto R, Kojima N, Yahata M, et al. 2023. Molecular characterization of a flavanone 3-hydroxylase gene from citrus fruit reveals its crucial roles in anthocyanin accumulation. BMC Plant Biology 23:233

doi: 10.1186/s12870-023-04173-3
[5]

Maloney GS, DiNapoli KT, Muday GK. 2014. The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development. Plant Physiology 166:614−31

doi: 10.1104/pp.114.240507
[6]

Jan R, Khan MA, Asaf S, Lee IJ, Kim KM. 2020. Overexpression of OsF3H modulates WBPH stress by alteration of phenylpropanoid pathway at a transcriptomic and metabolomic level in Oryza sativa. Scientific Reports 10:14685

doi: 10.1038/s41598-020-71661-z
[7]

Li C, Liu S, Yao X, Wang J, Wang T, et al. 2017. PnF3H, a flavanone 3-hydroxylase from the Antarctic moss Pohlia nutans, confers tolerance to salt stress and ABA treatment in transgenic Arabidopsis. Plant Growth Regulation 83:489−500

doi: 10.1007/s10725-017-0314-z
[8]

Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067−80

doi: 10.1007/s00425-012-1650-x
[9]

Zheng Y, Tian L, Liu H, Pan Q, Zhan J, et al. 2009. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regulation 58:251−60

doi: 10.1007/s10725-009-9373-0
[10]

Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology 139:1840−52

doi: 10.1104/pp.105.066688
[11]

Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, et al. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist 179:1004−16

doi: 10.1111/j.1469-8137.2008.02511.x
[12]

Si C, Dong W, Teixeira Da Silva JA, He C, Yu Z, et al. 2023. Functional analysis of flavanone 3-hydroxylase (F3H) from Dendrobium officinale, which confers abiotic stress tolerance. Horticultural Plant Journal 9:356−64

doi: 10.1016/j.hpj.2022.03.006
[13]

Song X, Diao J, Ji J, Wang G, Guan C, et al. 2016. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco. Plant Physiology and Biochemistry 98:89−100

doi: 10.1016/j.plaphy.2015.11.011
[14]

Mo R, Han G, Zhu Z, Essemine J, Dong Z, et al. 2022. The ethylene response factor ERF5 regulates anthocyanin biosynthesis in 'Zijin' mulberry fruits by interacting with MYBA and F3H genes. International Journal of Molecular Sciences 23:7615

doi: 10.3390/ijms23147615
[15]

Zou T, Wang X, Sun T, Rong H, Wu L, et al. 2023. MYB transcription factor OsC1PLSr involves the regulation of purple leaf sheath in rice. International Journal of Molecular Sciences 24:6655

doi: 10.3390/ijms24076655
[16]

Zhao Y, Zhang G, Tang Q, Song W, Gao Q, et al. 2022. EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus. Frontiers in Plant Science 13:946827

doi: 10.3389/fpls.2022.946827
[17]

Suresh S, Begum RF, Ankul Singh S, Chitra V. 2022. Anthocyanin as a therapeutic in Alzheimer's disease: a systematic review of preclinical evidences. Ageing Research Reviews 76:101595

doi: 10.1016/j.arr.2022.101595
[18]

Tran PHL, Tran TTD. 2021. Blueberry supplementation in neuronal health and protective technologies for efficient delivery of blueberry anthocyanins. Biomolecules 11:102

doi: 10.3390/biom11010102
[19]

Zhang C, Guo Q, Liu Y, Liu H, Wang F, et al. 2017. Molecular cloning and functional analysis of a flavanone 3-hydroxylase gene from blueberry. The Journal of Horticultural Science and Biotechnology 92:57−64

doi: 10.1080/14620316.2016.1224604
[20]

Lin Y, Wang Y, Li B, Tan H, Li D, et al. 2018. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. Plant Physiology and Biochemistry 127:561−72

doi: 10.1016/j.plaphy.2018.04.034
[21]

Xu L, Gao Z, Li L, Guo J. 2024. Impact of dielectric barrier discharge cold plasma on anthocyanin metabolism in blueberries: a targeted metabonomic and transcriptomic analysis. Postharvest Biology and Technology 213:112963

doi: 10.1016/j.postharvbio.2024.112963
[22]

Zhang Y, Huang D, Wang B, Yang X, Wu H, et al. 2023. Characterization of highbush blueberry (Vaccinium corymbosum L.) anthocyanin biosynthesis related MYBs and functional analysis of VcMYB gene. Current Issues in Molecular Biology 45:379−99

doi: 10.3390/cimb45010027
[23]

Zhang Y, Liu F, Wang B, Wu H, Wu J, et al. 2021. Identification, characterization and expression analysis of anthocyanin biosynthesis-related bHLH genes in blueberry (Vaccinium corymbosum L.). International Journal of Molecular Sciences 22:13274

doi: 10.3390/ijms222413274
[24]

Zhang Y, Zhang Z, Guo S, Qu P, Liu J, et al. 2024. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of 'MYB/bHLH-GSTF' module in anthocyanin accumulation. Industrial Crops and Products 218:119006

doi: 10.1016/j.indcrop.2024.119006
[25]

Aguadé M. 2001. Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. Molecular Biology and Evolution 18:1−9

doi: 10.1093/oxfordjournals.molbev.a003714
[26]

Jan R, Asaf S, Paudel S, Lubna, Lee S, et al. 2021. Discovery and validation of a novel step catalyzed by OsF3H in the flavonoid biosynthesis pathway. Biology 10:32

doi: 10.3390/biology10010032
[27]

Lim YJ, Lyu JI, Kwon SJ, Eom SH. 2021. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chemistry 339:128080

doi: 10.1016/j.foodchem.2020.128080
[28]

Qiao F, Zhang K, Zhou L, Qiu QS, Chen Z, et al. 2022. Analysis of flavonoid metabolism during fruit development of Lycium chinense. Journal of Plant Physiology 279:153856

doi: 10.1016/j.jplph.2022.153856
[29]

Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. 2015. Three R2R3-MYB Transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168:175−91

doi: 10.1104/pp.114.254599
[30]

Yuan Y, Ma X, Shi Y, Tang D. 2013. Isolation and expression analysis of six putative structural genes involved in anthocyanin biosynthesis in Tulipa fosteriana. Scientia Horticulturae 153:93−102

doi: 10.1016/j.scienta.2013.02.008
[31]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[32]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[33]

Chou KC, Shen HB. 2008. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols 3:153−62

doi: 10.1038/nprot.2007.494
[34]

Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, et al. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology 130:729−39

doi: 10.1104/pp.006957
[35]

von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, et al. 2005. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Research 33:D433−D437

doi: 10.1093/nar/gki005
[36]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[37]

Lv Y, Zhang M, Wu T, Wu T, Zhong Y. 2019. The infiltration efficiency of Agrobacterium-mediated transient transformation in four apple cultivars. Scientia Horticulturae 256:108597

doi: 10.1016/j.scienta.2019.108597
[38]

Zhang Z, Qu P, Hao S, Li R, Zhang Y, et al. 2023. Characterization and functional analysis of chalcone synthase genes in highbush blueberry (Vaccinium corymbosum). International Journal of Molecular Sciences 24:13882

doi: 10.3390/ijms241813882
[39]

Hu Y, Gong Z, Yan Y, Zhang J, Shao A, et al. 2024. ChBBX6 and ChBBX18 are positive regulators of anthocyanins biosynthesis and carotenoids degradation in Cerasus humilis. International Journal of Biological Macromolecules 282:137195

doi: 10.1016/j.ijbiomac.2024.137195
[40]

Wang N, Liu W, Zhang T, Jiang S, Xu H, et al. 2018. Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis. Journal of Agricultural and Food Chemistry 66:7076−86

doi: 10.1021/acs.jafc.8b01273
[41]

Chen H, Zou Y, Shang Y, Lin H, Wang Y, et al. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146:323−24

doi: 10.1104/pp.107.111740
[42]

Bai Y, Zou R, Zhang H, Li J, Wu T. 2024. Functional characterization of CsF3Ha and its promoter in response to visible light and plant growth regulators in the tea plant. Plants 13:196

doi: 10.3390/plants13020196
[43]

Jan R, Aaqil Khan M, Asaf S, Lubna, Park JR, et al. 2021. Flavonone 3-hydroxylase relieves bacterial leaf blight stress in rice via overaccumulation of antioxidant flavonoids and induction of defense fenes and hormones. International Journal of Molecular Sciences 22:6152

doi: 10.3390/ijms22116152
[44]

Yang C, Chen W, Tang D, Tan X, Tan L, et al. 2024. Metabolomic and transcriptomic insights into anthocyanin biosynthesis in 'Ziyan' tea plants under varied photoperiod and temperature conditions. Agronomy 14:56

doi: 10.3390/agronomy14010056
[45]

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, et al. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal 55:940−53

doi: 10.1111/j.1365-313X.2008.03564.x
[46]

Schaart JG, Dubos C, Romero De La Fuente IR, van Houwelingen AMML, de Vos RCH, et al. 2013. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytologist 197:454−67

doi: 10.1111/nph.12017
[47]

Liu X, Zhai Y, Liu J, Xue J, Markovic T, et al. 2023. Comparative transcriptome sequencing analysis to postulate the scheme of regulated leaf coloration in Perilla frutescens. Plant Molecular Biology 112:119−42

doi: 10.1007/s11103-023-01342-8
[48]

Li N, Xu Y, Lu Y. 2024. A regulatory mechanism on pathways: modulating roles of MYC2 and BBX21 in the flavonoid network. Plants 13:1156

doi: 10.3390/plants13081156
[49]

Wang G, Zhang L, Wang G, Cao F. 2022. Growth and flavonol accumulation of Ginkgo biloba leaves affected by red and blue light. Industrial Crops and Products 187:115488

doi: 10.1016/j.indcrop.2022.115488