[1]

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86−90

doi: 10.1038/nature11237
[2]

Xiao X, Chen W, Zong L, Yang J, Jiao S, et al. 2017. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology 26(6):1641−51

doi: 10.1111/mec.14027
[3]

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiological Research 221:36−49

doi: 10.1016/j.micres.2019.02.001
[4]

Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytologist 206(4):1196−206

doi: 10.1111/nph.13312
[5]

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37(5):634−63

doi: 10.1111/1574-6976.12028
[6]

Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, et al. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist 181(2):413−23

doi: 10.1111/j.1469-8137.2008.02657.x
[7]

Stone BWG, Weingarten EA, Jackson CR. 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews Online 1:1−24

doi: 10.1002/9781119312994.apr0614
[8]

Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, et al. 2005. Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytologist 166(2):589−94

doi: 10.1111/j.1469-8137.2005.01343.x
[9]

Burch AY, Do PT, Sbodio A, Suslow TV, Lindow SE. 2016. High-level culturability of epiphytic bacteria and frequency of biosurfactant producers on leaves. Applied and Environmental Microbiology 82:5997−6009

doi: 10.1128/AEM.01751-16
[10]

Alamgir KM, Masuda S, Fujitani Y, Fukuda F, Tani A. 2015. Production of ergothioneine by Methylobacterium species. Frontiers in Microbiology 6:1185

doi: 10.3389/fmicb.2015.01185
[11]

Vorholt JA. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10(12):828−40

doi: 10.1038/nrmicro2910
[12]

Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77:3202−10

doi: 10.1128/AEM.00133-11
[13]

Zhang S, Gan Y, Xu B. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science 7:1405

doi: 10.3389/fpls.2016.01405
[14]

Kinkel LL, Wilson M, Lindow SE. 2000. Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microbial Ecology 39(1):1−11

doi: 10.1007/s002489900182
[15]

Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7(1):59

doi: 10.1186/s40168-019-0677-7
[16]

Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. 2013. The rhizosphere revisited: root microbiomics. Frontiers in Plant Science 4:165

doi: 10.3389/fpls.2013.00165
[17]

Abdel-Lateif K, Bogusz D, Hocher V. 2012. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling & Behavior 7(6):636−41

doi: 10.4161/psb.20039
[18]

Sood SG. 2003. Chemotactic response of plant-growth-promoting bacteria toward roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology 45(3):219−27

doi: 10.1016/S0168-6496(03)00155-7
[19]

Zhou X, Wu F. 2012. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS One 7(10):e48288

doi: 10.1371/journal.pone.0048288
[20]

Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology 68(1):1−13

doi: 10.1111/j.1574-6941.2009.00654.x
[21]

Yang CS, Zhang JS, Zhang L, Huang JB, Wang Y. 2016. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition & Food Research 60(1):160−74

doi: 10.1002/mnfr.201500428
[22]

Keith L, Ko WH, Sato DM. 2006. Identification guide for diseases of tea (Camellia sinensis). Plant Disease 33:1−4

[23]

Karunarathna KHT, Mewan KM, Weerasena OVDSJ, Perera SACN, Edirisinghe ENU. 2021. A functional molecular marker for detecting blister blight disease resistance in tea (Camellia sinensis L.). Plant Cell Reports 40(2):351−59

doi: 10.1007/s00299-020-02637-6
[24]

Zhang Q, Guo N, Zhang Y, Yu Y, Liu S. 2022. Genome-wide characterization and expression analysis of pathogenesis-related 1 (PR-1) gene family in tea plant (Camellia sinensis (L.) O. Kuntze) in response to blister-blight disease stress. International Journal of Molecular Sciences 23(3):1292

doi: 10.3390/ijms23031292
[25]

Ranilla LG, Kwon YI, Apostolidis E, Shetty K. 2010. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology 101(12):4676−89

doi: 10.1016/j.biortech.2010.01.093
[26]

Morris DL. 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107(2775):254−55

doi: 10.1126/science.107.2775.254
[27]

Liu S, Yu Z, Zhu H, Zhang W, Chen Y. 2016. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complementary and Alternative Medicine 16:378

doi: 10.1186/s12906-016-1361-0
[28]

Xu Q, Cheng L, Mei Y, Huang L, Zhu J, et al. 2019. Alternative splicing of key genes in LOX pathway involves biosynthesis of volatile fatty acid derivatives in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67(47):13021−32

doi: 10.1021/acs.jafc.9b05925
[29]

Chen S, Zhou Y, Chen Y, Gu J. 2018. FASTP: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884−i890

doi: 10.1093/bioinformatics/bty560
[30]

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957−63

doi: 10.1093/bioinformatics/btr507
[31]

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−98

doi: 10.1038/nmeth.2604
[32]

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194−200

doi: 10.1093/bioinformatics/btr381
[33]

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73(16):5261−67

doi: 10.1128/AEM.00062-07
[34]

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, et al. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35(21):7188−96

doi: 10.1093/nar/gkm864
[35]

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47(D1):D259−D264

doi: 10.1093/nar/gky1022
[36]

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome datasets are compositional: and this is not optional. Frontiers in Microbiology 8:2224

doi: 10.3389/fmicb.2017.02224
[37]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−42

doi: 10.1016/j.molp.2023.09.010
[38]

Li Y, Wu X, Chen T, Wang W, Liu G, et al. 2018. Plant phenotypic traits eventually shape its microbiota: a common garden test. Frontiers in Microbiology 9:2479

doi: 10.3389/fmicb.2018.02479
[39]

Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, et al. 2018. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Chateaurenard region. Frontiers in Microbiology 9:568

doi: 10.3389/fmicb.2018.00568
[40]

Cobo-Díaz JF, Baroncelli R, Le Floch G, Picot A. 2019. Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and Fusarium communities and their interactions in maize stalks. Frontiers in Microbiology 10:261

doi: 10.3389/fmicb.2019.00261
[41]

Chen Y, Zhou B, Li J, Tang H, Cui Y, et al. 2023. Blister blight lesions of tea (Camellia sinensis L. Kuntze) leaves: microbial diversity analysis and identification of the disease fungi. Chinese Agricultural Science Bulletin 39(6):116−23

[42]

Andreote FD, Gumiere T, Durrer A. 2014. Exploring interactions of plant microbiomes. Scientia Agricola 71:528−39

doi: 10.1590/0103-9016-2014-0195
[43]

Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64:807−38

doi: 10.1146/annurev-arplant-050312-120106
[44]

Kim MJ, Jeon CW, Cho G, Kim DR, Kwack YB, et al. 2018. Comparison of microbial community structure in kiwifruit pollens. The Plant Pathology Journal 34(2):143−49

doi: 10.5423/PPJ.NT.12.2017.0281
[45]

Postle K, Kadner RJ. 2003. Touch and go: tying TonB to transport. Molecular Microbiology 49(4):869−82

doi: 10.1046/j.1365-2958.2003.03629.x
[46]

Kamo T, Hiradate S, Suzuki K, Fujita I, Yamaki S, et al. 2018. Methylobamine, a UVA-absorbing compound from the plant-associated bacteria Methylobacterium sp. Natural Product Communications 13:141−43

doi: 10.1177/1934578X1801300208
[47]

Amaretti A, Righini L, Candeliere F, Musmeci E, Bonvicini F, et al. 2020. Antibiotic resistance, virulence factors, phenotyping, and genotyping of non-Escherichia coli Enterobacterales from the gut microbiota of healthy subjects. International Journal of Molecular Sciences 21(5):1847

doi: 10.3390/ijms21051847
[48]

Sapre S, Gontia-Mishra I, Tiwari S. 2018. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research 206:25−32

doi: 10.1016/j.micres.2017.09.009
[49]

Li X, Quan CS, Fan SD. 2007. Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Letters in Applied Microbiology 45(5):508−14

doi: 10.1111/j.1472-765X.2007.02221.x
[50]

Madhaiyan M, Hu CJ, Roy JJ, Kim SJ, Weon HY, et al. 2013. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. International Journal of Systematic and Evolutionary Microbiology 63:1702−08

doi: 10.1099/ijs.0.041020-0
[51]

Tuo L, Yan XR. 2019. Aureimonas flava sp. nov., a novel endophytic bacterium isolated from leaf of Acrostichum aureum. International Journal of Systematic and Evolutionary Microbiology 69(3):846−51

doi: 10.1099/ijsem.0.003252
[52]

Webster G, Mullins AJ, Cunningham-Oakes E, Renganathan A, Aswathanarayan JB, et al. 2020. Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India. FEMS Microbiology Ecology 96(9):fiaa147

doi: 10.1093/femsec/fiaa147
[53]

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research 111:509−47

doi: 10.1016/j.mycres.2007.03.004
[54]

Gao XX, Zhou H, Xu DY, Yu CH, Chen YQ, et al. 2005. High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach. FEMS Microbiology Letters 249(2):255−66

doi: 10.1016/j.femsle.2005.06.017
[55]

Lucero ME, Unc A, Cooke P, Dowd S, Sun S. 2011. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6(3):e17693

doi: 10.1371/journal.pone.0017693
[56]

He Y, Li Y, Song Y, Hu X, Liang J, et al. 2022. Amplicon sequencing reveals novel fungal species responsible for a controversial tea disease. Journal of Fungi 8(8):782

doi: 10.3390/jof8080782
[57]

O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics 44(9):1060−65

doi: 10.1038/ng.2372
[58]

He S, Qiao X, Zhang S, Xia J, Wang L, et al. 2022. Urate oxidase from tea microbe Colletotrichum camelliae is involved in the caffeine metabolism pathway and plays a role in fungal virulence. Frontiers in Nutrition 9:1038806

doi: 10.3389/fnut.2022.1038806
[59]

Dong Z, Liu W, Zhou D, Li P, Wang T, et al. 2019. Bioactive exopolysaccharides reveal Camellia oleifera infected by the fungus Exobasidium gracile could have a functional use. Molecules 24(11):2048

doi: 10.3390/molecules24112048
[60]

Cao R, Dong X, Zhao Y, Yin J. 2023. Effects of blister blight disease on endophytic microbial diversity and community structure in tea (Camellia sinensis) leaves. 3 Biotech 13:421

doi: 10.1007/s13205-023-03846-y
[61]

Adeleke BS, Fadiji AE, Ayilara MS, Igiehon ON, Nwachukwu BC, et al. 2022. Strategies to enhance the use of endophytes as bioinoculants in agriculture. Horticulturae 8(6):498

doi: 10.3390/horticulturae8060498
[62]

Huang B, Chen Y, Pei Z, Jiang L, Zhang Y, et al. 2022. Application of microbial organic fertilizers promotes the utilization of nutrients and restoration of microbial community structure and function in rhizosphere soils after dazomet fumigation. Frontiers in Microbiology 13:122611

doi: 10.3389/fmicb.2022.1122611
[63]

Haas D, Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology 41:117−53

doi: 10.1146/annurev.phyto.41.052002.095656
[64]

Nicholson RL, Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30:369−89

doi: 10.1146/annurev.py.30.090192.002101
[65]

Wang S, Liu L, Mi X, Zhao S, An Y, et al. 2021. Multiomics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. The Plant Journal 106(3):862−75

doi: 10.1111/tpj.15203
[66]

Wang YC, Qian WJ, Li NN, Hao XY, Wang L, et al. 2016. Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola. Journal of Agricultural and Food Chemistry 64(35):6685−93

doi: 10.1021/acs.jafc.6b02044
[67]

Jing T, Zhang N, Gao T, Zhao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: a case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67

doi: 10.1111/pce.13479
[68]

Zhao M, Jin J, Wang J, Gao T, Luo Y, et al. 2022. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. The Plant Journal 109(6):1489−506

doi: 10.1111/tpj.15647
[69]

Gfeller V, Huber M, Förster C, Huang W, Köllner TG, et al. 2019. Root volatiles in plant‒plant interactions I: high root sesquiterpene release is associated with increased germination and growth of plant neighbors. Plant, Cell & Environment 42(6):1950−63

doi: 10.1111/pce.13532
[70]

Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, et al. 2020. Omics-based mechanistic insight into the role of bioengineered nanoparticles for biotic stress amelioration by modulating plant metabolic pathways. Frontiers in Bioengineering and Biotechnology 8:242

doi: 10.3389/fbioe.2020.00242