| [1] |
Shen S, Jiao B, Li Y. 2024. The CLAVATA signaling: a roadmap to optimize grain shape in rice. Journal of Genetics and Genomics 51:677−79 doi: 10.1016/j.jgg.2024.06.003 |
| [2] |
Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, et al. 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics 48:785−91 doi: 10.1038/ng.3567 |
| [3] |
Searle IR, Men AM, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, et al. 2003. Long distance signalling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109−12 doi: 10.1126/science.1077937 |
| [4] |
Zhang Z, Han H, Zhao J, Liu Z, Deng L, et al. 2025. Peptide hormones in plants. Molecular Horticulture 5:7 doi: 10.1186/s43897-024-00134-y |
| [5] |
Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, et al. 2008. Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biology 8:1 doi: 10.1186/1471-2229-8-1 |
| [6] |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294 doi: 10.1126/science.1150083 |
| [7] |
Hu C, Zhu Y, Cui Y, Zeng L, Li S, et al. 2022. A CLE–BAM–CIK signalling module controls root protophloem differentiation in Arabidopsis. New Phytologist 233:282−96 doi: 10.1111/nph.17791 |
| [8] |
Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, et al. 2015. BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytologist 208:1104−13 doi: 10.1111/nph.13520 |
| [9] |
Zhang H, Lin X, Han Z, Qu LJ, Chai J. 2016. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Research 26:543−55 doi: 10.1038/cr.2016.45 |
| [10] |
Hirakawa Y, Bowman JL. 2015. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes. Frontiers in Plant Science 6:1048 doi: 10.3389/fpls.2015.01048 |
| [11] |
Yaginuma H, Hirakawa Y, Kondo Y, Ohashi-Ito K, Fukuda H. 2011. A novel function of TDIF-related peptides: promotion of axillary bud formation. Plant & Cell Physiology 52:1354−64 doi: 10.1093/pcp/pcr081 |
| [12] |
John A, Smith ES, Jones DS, Soyars CL, Nimchuk ZL. 2023. A network of CLAVATA receptors buffers auxin-dependent meristem maintenance. Nature Plants 9:1306−17 doi: 10.1038/s41477-023-01485-y |
| [13] |
Wang J, Jiang Q, Pleskot R, Grones P, Bahafid E, et al. 2023. TPLATE complex-dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance. EMBO Reports 24:e54709 doi: 10.15252/embr.202254709 |
| [14] |
Wang Y, Jiao Y. 2023. Cell signaling in the shoot apical meristem. Plant Physiology 193:70−82 doi: 10.1093/plphys/kiad309 |
| [15] |
Liu W, Cai G, Zhai N, Wang H, Tang T, et al. 2023. Genome and transcriptome of Selaginella kraussiana reveal evolution of root apical meristems in vascular plants. Current Biology 33:4085−4097.e5 doi: 10.1016/j.cub.2023.08.061 |
| [16] |
Hõrak H. 2022. As above, so below: CLE peptide signaling in shoot and root apical meristems. The Plant Cell 34:1159−60 doi: 10.1093/plcell/koac012 |
| [17] |
Wang W, Hu C, Li X, Zhu Y, Tao L, et al. 2022. Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain shoot apical meristem and root apical meristem homeostasis in Arabidopsis. The Plant Cell 34:1289−307 doi: 10.1093/plcell/koab315 |
| [18] |
Cammarata J, Farfan CM, Scanlon MJ, Roeder AHK. 2022. Cytokinin–CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants. Proceedings of the National Academy of Sciences of the United States of America 119:e2116860119 doi: 10.1073/pnas.2116860119 |
| [19] |
Hirakawa Y. 2021. CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides 142:170579 doi: 10.1016/j.peptides.2021.170579 |
| [20] |
Song XF, Hou XL, Liu CM. 2021. CLE peptides: critical regulators for stem cell maintenance in plants. Planta 255:5 doi: 10.1007/s00425-021-03791-1 |
| [21] |
Zhou W. 2021. CIK receptor kinases in root meristem. Molecular Plant 14:873 doi: 10.1016/j.molp.2021.04.016 |
| [22] |
Somssich M, Je BI, Simon R, Jackson D. 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238−48 doi: 10.1242/dev.133645 |
| [23] |
Mandel T, Candela H, Landau U, Asis L, Zelinger E, et al. 2016. Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development 143:1612−22 doi: 10.1242/dev.129973 |
| [24] |
Soyars CL, James SR, Nimchuk ZL. 2016. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Current Opinion in Plant Biology 29:163−68 doi: 10.1016/j.pbi.2015.12.002 |
| [25] |
Azizi P, Rafii MY, Maziah M, Abdullah SNA, Hanafi MM, et al. 2015. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development 135:1−15 doi: 10.1016/j.mod.2014.11.001 |
| [26] |
Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, et al. 2013. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proceedings of the National Academy of Sciences of the United States of America 110:7074−79 doi: 10.1073/pnas.1222314110 |
| [27] |
Wu J, Song Y, Qiao R, Qiang Y, Wang G. 2013. CLE peptide signaling in balancing the maintenance and differentiation of meristems. Chinese Bulletin of Life Sciences 25:421−26 |
| [28] |
Chu H, Liang W, Li J, Hong F, Wu Y, et al. 2013. A CLE–WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. Journal of Experimental Botany 64:5359−69 doi: 10.1093/jxb/ert301 |
| [29] |
Dodueva IE, Yurlova EV, Osipova MA, Lutova LA. 2012. CLE peptides are universal regulators of meristem development. Russian Journal of Plant Physiology 59:14−27 doi: 10.1134/S1021443712010050 |
| [30] |
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, et al. 2011. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant and Cell Physiology 52:14−29 doi: 10.1093/pcp/pcq157 |
| [31] |
Durbak AR. 2010. Genetic studies of clavata pathway receptor mutants reveal distinctions between pathway components in meristems and fruit Thesis. University of Arizona, US |
| [32] |
Meng L, Feldman LJ. 2010. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis. Planta 232:1061−74 doi: 10.1007/s00425-010-1236-4 |
| [33] |
Suzaki T, Yoshida A, Hirano HY. 2008. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. The Plant Cell 20:2049−58 doi: 10.1105/tpc.107.057257 |
| [34] |
Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, et al. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380−84 doi: 10.1126/science.1164147 |
| [35] |
Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, et al. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539−48 doi: 10.1242/dev.010298 |
| [36] |
Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, et al. 2006. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant and Cell Physiology 47:1591−602 doi: 10.1093/pcp/pcl025 |
| [37] |
Leibfried A, To JPC, Busch W, Stehling S, Kehle A, et al. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172−75 doi: 10.1038/nature04270 |
| [38] |
Casamitjana-Martínez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, et al. 2003. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Current Biology 13:1435−41 doi: 10.1016/S0960-9822(03)00533-5 |
| [39] |
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911−14 doi: 10.1126/science.283.5409.1911 |
| [40] |
Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM. 1996. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567−75 doi: 10.1242/dev.122.5.1567 |
| [41] |
Qian P, Song W, Yokoo T, Minobe A, Wang G, et al. 2018. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nature Plants 4:1071−81 doi: 10.1038/s41477-018-0317-4 |
| [42] |
Guo X, Wang J, Gardner M, Fukuda H, Kondo Y, et al. 2017. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathogens 13:e1006142 doi: 10.1371/journal.ppat.1006142 |
| [43] |
Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, et al. 2014. Molecular genetic framework for protophloem formation. Proceedings of the National Academy of Sciences of the United States of America 111:11551−56 doi: 10.1073/pnas.1407337111 |
| [44] |
Hirakawa Y, Kondo Y, Fukuda H. 2010. Regulation of vascular development by CLE peptide-receptor systems. Journal of Integrative Plant Biology 52:8−16 doi: 10.1111/j.1744-7909.2010.00904.x |
| [45] |
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature Genetics 51:786−92 doi: 10.1038/s41588-019-0389-8 |
| [46] |
Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, et al. 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649−57 doi: 10.1242/dev.01441 |
| [47] |
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235−38 doi: 10.1038/s41586-018-0009-2 |
| [48] |
McLachlan DH, Pridgeon AJ, Hetherington AM. 2018. How Arabidopsis talks to itself about its water supply. Molecular Cell 70:991−92 doi: 10.1016/j.molcel.2018.06.011 |
| [49] |
Endo S, Shinohara H, Matsubayashi Y, Fukuda H. 2013. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Current Biology 23:1670−76 doi: 10.1016/j.cub.2013.06.060 |
| [50] |
Zhang Z, Liu C, Li K, Li X, Xu M, et al. 2022. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Molecular Plant 15:179−88 doi: 10.1016/j.molp.2021.09.006 |
| [51] |
Dong W, Wang Y, Takahashi H. 2019. CLE-CLAVATA1 signaling pathway modulates lateral root development under sulfur deficiency. Plants 8:103 doi: 10.3390/plants8040103 |
| [52] |
Vatén A, Soyars CL, Tarr PT, Nimchuk ZL, Bergmann DC. 2018. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Developmental Cell 47:53−66.e5 doi: 10.1016/j.devcel.2018.08.007 |
| [53] |
Kondo Y, Hirakawa Y, Kieber JJ, Fukuda H. 2011. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant and Cell Physiology 52:37−48 doi: 10.1093/pcp/pcq129 |
| [54] |
Czyzewicz N, De Smet I. 2016. The Arabidopsis thaliana CLAVATA3/EMBRYO-SURROUNDING REGION 26 (CLE26) peptide is able to alter root architecture of Solanum lycopersicum and Brassica napus. Plant Signaling & Behavior 11:e1118598 doi: 10.1080/15592324.2015.1118598 |
| [55] |
Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, et al. 2014. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. Nature Communications 5:3504 doi: 10.1038/ncomms4504 |
| [56] |
Willoughby AC, Nimchuk ZL. 2021. WOX going on: CLE peptides in plant development. Current Opinion in Plant Biology 63:598102056 doi: 10.1016/j.pbi.2021.102056 |
| [57] |
Liu P, Zhang J, Liu S, Li Y, Qi C, et al. 2025. The plant signal peptide CLE7 induces plant defense response against viral infection in Nicotiana benthamiana. Developmental Cell 60:934−948.e5 doi: 10.1016/j.devcel.2024.11.020 |
| [58] |
Etchells JP, Turner SR. 2010. Orientation of vascular cell divisions in Arabidopsis. Plant Signaling & Behavior 5:730−32 doi: 10.4161/psb.5.6.11665 |
| [59] |
Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767−74 doi: 10.1242/dev.044941 |
| [60] |
Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, et al. 2005. The 14–amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. The Plant Cell 17:2542−53 doi: 10.1105/tpc.105.034009 |
| [61] |
Strabala TJ, Phillips L, West M, Stanbra L. 2014. Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biology 14:47 doi: 10.1186/1471-2229-14-47 |
| [62] |
Strabala TJ, O'Donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, et al. 2006. Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiology 140:1331−44 doi: 10.1104/pp.105.075515 |
| [63] |
Jones DS, John A, VanDerMolen KR, Nimchuk ZL. 2021. CLAVATA signaling ensures reproductive development in plants across thermal environments. Current Biology 31:220−227.e5 doi: 10.1016/j.cub.2020.10.008 |
| [64] |
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, et al. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842−45 doi: 10.1126/science.1128436 |
| [65] |
Wulf K, Sun J, Wang C, Ho-Plagaro T, Kwon CT, et al. 2024. The role of CLE peptides in the suppression of mycorrhizal colonization of tomato. Plant and Cell Phsiology 65:107−19 doi: 10.1093/pcp/pcad124 |
| [66] |
Imin N, Patel N, Corcilius L, Payne RJ, Djordjevic MA. 2018. CLE peptide tri-arabinosylation and peptide domain sequence composition are essential for SUNN-dependent autoregulation of nodulation in Medicago truncatula. New Phytologist 218:73−80 doi: 10.1111/nph.15019 |
| [67] |
Matsubayashi Y, Sakagami Y. 2006. Peptide hormones in plants. Annual Review of Plant Biology 57:649−74 doi: 10.1146/annurev.arplant.56.032604.144204 |
| [68] |
Ni J, Clark SE. 2006. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiology 140:726−33 doi: 10.1104/pp.105.072678 |
| [69] |
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 2009. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biology 5:578−80 doi: 10.1038/nchembio.182 |
| [70] |
Song W, Han Z, Wang J, Lin G, Chai J. 2017. Structural insights into ligand recognition and activation of plant receptor kinases. Current Opinion in Structural Biology 43:18−27 doi: 10.1016/j.sbi.2016.09.012 |
| [71] |
Zhang H, Lin X, Han Z, Wang J, Qu LJ, et al. 2016. SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development. Molecular Plant 9:1406−14 doi: 10.1016/j.molp.2016.07.004 |
| [72] |
Yu Y, Song W, Zhai N, Zhang S, Wang J, et al. 2023. PXL1 and SERKs act as receptor–coreceptor complexes for the CLE19 peptide to regulate pollen development. Nature Communications 14:3307 doi: 10.1038/s41467-023-39074-4 |
| [73] |
Goad DM, Zhu C, Kellogg EA. 2017. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytologist 216:605−16 doi: 10.1111/nph.14348 |
| [74] |
Miwa H, Tamaki T, Fukuda H, Sawa S. 2009. Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity. Plant Signaling & Behavior 4:477−81 doi: 10.4161/psb.4.6.8391 |
| [75] |
Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiology 154:1721−36 doi: 10.1104/pp.110.163683 |
| [76] |
Berckmans B, Kirschner G, Gerlitz N, Stadler R, Simon R. 2020. CLE40 signaling regulates root stem cell fate. Plant Physiology 182:1776−92 doi: 10.1104/pp.19.00914 |
| [77] |
Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S, et al. 2013. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Current Biology 23:362−71 doi: 10.1016/j.cub.2013.01.045 |
| [78] |
Clark SE, Running MP, Meyerowitz EM. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057−67 doi: 10.1242/dev.121.7.2057 |
| [79] |
Xu TT, Ren SC, Song XF, Liu CM. 2015. CLE19 expressed in the embryo regulates both Cotyledon establishment and endosperm development in Arabidopsis. Journal of Experimental Botany 66:5217−27 doi: 10.1093/jxb/erv293 |
| [80] |
Han H, Zhuang K, Qiu Z. 2022. CLE peptides join the plant longevity club. Trends in Plant Science 27:961−63 doi: 10.1016/j.tplants.2022.07.001 |
| [81] |
Zhu Y, Hu C, Cui Y, Zeng L, Li S, et al. 2021. Conserved and differentiated functions of CIK receptor kinases in modulating stem cell signaling in Arabidopsis. Molecular Plant 14:1119−34 doi: 10.1016/j.molp.2021.04.001 |
| [82] |
Carbonnel S, Cornelis S, Hazak O. 2023. The CLE33 peptide represses phloem differentiation via autocrine and paracrine signaling in Arabidopsis. Communications Biology 6:588 doi: 10.1038/s42003-023-04972-2 |
| [83] |
Mu C, Cheng W, Fang H, Geng R, Jiang J, et al. 2024. Uncovering PheCLE1 and PheCLE10 promoting root development based on genome-wide analysis. International Journal of Molecular Sciences 25:7190 doi: 10.3390/ijms25137190 |
| [84] |
Ramachandran P, Augstein F, Nguyen V, Carlsbecker A. 2020. Coping with water limitation: hormones that modify plant root xylem development. Frontiers in Plant Science 11:570 doi: 10.3389/fpls.2020.00570 |
| [85] |
Fan P, Aguilar E, Bradai M, Xue H, Wang H, et al. 2021. The receptor-like kinases BAM1 and BAM2 are required for root xylem patterning. Proceedings of the National Academy of Sciences of the United States of America 118:e2022547118 doi: 10.1073/pnas.2022547118 |
| [86] |
Song Y, Yang S, Wang J. 2021. In vitro and in vivo activity analysis of poplar CLE dodecapeptides that are most divergent from Arabidopsis counterparts. Plant Science 305:110832 doi: 10.1016/j.plantsci.2021.110832 |
| [87] |
Wang S, Lu J, Song XF, Ren SC, You C, et al. 2017. Cytological and transcriptomic analyses reveal important roles of CLE19 in pollen exine formation. Plant Physiology 175:1186−202 doi: 10.1104/pp.17.00439 |
| [88] |
Zhu C, Liu L, Crowell O, Zhao H, Brutnell TP, et al. 2021. The CLV3 homolog in Setaria viridis selectively controls inflorescence meristem size. Frontiers in Plant Science 12:636749 doi: 10.3389/fpls.2021.636749 |
| [89] |
Cui J, You C, Zhu E, Huang Q, Ma H, et al. 2016. Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. The Plant Cell 28:1078−93 doi: 10.1105/tpc.15.00986 |
| [90] |
Zhu E, You C, Wang S, Cui J, Niu B, et al. 2015. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. The Plant Journal 83:976−90 doi: 10.1111/tpj.12942 |
| [91] |
Lai Z, Wang J, Fu Y, Wang M, Ma H, et al. 2024. Revealing the role of CCoAOMT1: fine-tuning bHLH transcription factors for optimal anther development. Science China Life Sciences 67:565−78 doi: 10.1007/s11427-023-2461-0 |
| [92] |
Fiume E, Fletcher JC. 2012. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell 24:1000−12 doi: 10.1105/tpc.111.094839 |
| [93] |
Pillitteri LJ, Torii KU. 2012. Mechanisms of stomatal development. Annual Review of Plant Biology 63:591−614 doi: 10.1146/annurev-arplant-042811-105451 |
| [94] |
Qu X, Cao B, Kang J, Wang X, Han X, et al. 2019. Fine-tuning stomatal movement through small signaling peptides. Frontiers in Plant Science 10:69 doi: 10.3389/fpls.2019.00069 |
| [95] |
Christmann A, Grill E. 2018. Peptide signal alerts plants to drought. Nature 556:178−79 doi: 10.1038/d41586-018-03872-4 |
| [96] |
Zhang L, Shi X, Zhang Y, Wang J, Yang J, et al. 2019. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant, Cell & Environment 42:1033−44 doi: 10.1111/pce.13475 |
| [97] |
Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, et al. 2015. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Developmental Cell 33:107−18 doi: 10.1016/j.devcel.2015.01.025 |
| [98] |
Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology 61:561−91 doi: 10.1146/annurev-arplant-042809-112226 |
| [99] |
Cammarata J, Roeder AH, Scanlon MJ. 2019. Cytokinin and CLE signaling are highly intertwined developmental regulators across tissues and species. Current Opinion in Plant Biology 51:96−104 doi: 10.1016/j.pbi.2019.05.006 |
| [100] |
Saur IML, Oakes M, Djordjevic MA, Imin N. 2011. Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytologist 190:865−74 doi: 10.1111/j.1469-8137.2011.03738.x |
| [101] |
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development 25:2025−30 doi: 10.1101/gad.17258511 |
| [102] |
Daum G, Medzihradszky A, Suzaki T, Lohmann JU. 2014. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:14619−24 doi: 10.1073/pnas.1406446111 |
| [103] |
Wybouw B, De Rybel B. 2019. Cytokinin–a developing story. Trends in Plant Science 24:177−85 doi: 10.1016/j.tplants.2018.10.012 |
| [104] |
Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. Development 145:dev149344 doi: 10.1242/dev.149344 |
| [105] |
Stahl Y, Wink RH, Ingram GC, Simon R. 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Current Biology 19:909−14 doi: 10.1016/j.cub.2009.03.060 |
| [106] |
Nodine MD, Yadegari R, Tax FE. 2007. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental Cell 12:943−56 doi: 10.1016/j.devcel.2007.04.003 |
| [107] |
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. 2008. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proceedings of the National Academy of Sciences of the United States of America 105:18625−30 doi: 10.1073/pnas.0809395105 |
| [108] |
Smit ME, McGregor SR, Sun H, Gough C, Bågman AM, et al. 2020. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. The Plant Cell 32:319−35 doi: 10.1105/tpc.19.00562 |
| [109] |
Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224−34 doi: 10.1242/dev.091314 |
| [110] |
Wang Q, Aliaga Fandino AC, Graeff M, DeFalco TA, Zipfel C, et al. 2023. A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation. Nature Communications 14:423 doi: 10.1038/s41467-023-36200-0 |
| [111] |
Yamaguchi YL, Ishida T, Yoshimura M, Imamura Y, Shimaoka C, et al. 2017. A collection of mutants for CLE-peptide-encoding genes in Arabidopsis generated by CRISPR/Cas9-mediated gene targeting. Plant and Cell Physiology 58:1848−56 doi: 10.1093/pcp/pcx139 |