| [1] |
Yang G, Li L, Wei M, Li J, Yang F. 2022. SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels. Frontiers in Plant Science 13:843996 doi: 10.3389/fpls.2022.843996 |
| [2] |
Chen S, Jia Y, Wu Y, Ren F. 2024. Anthocyanin and its bioavailability, health benefits, and applications: a comprehensive review. Food Reviews International 40:3666−89 doi: 10.1080/87559129.2024.2369696 |
| [3] |
Lv LL, Feng XF, Li W, Li K. 2019. High temperature reduces peel color in eggplant (Solanum melongena) as revealed by RNA-seq analysis. Genome 62:503−12 doi: 10.1139/gen-2019-0021 |
| [4] |
Zhou LJ, Geng Z, Wang Y, Wang Y, Liu S, et al. 2021. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in Chrysanthemum. Horticulture Research 8:248 doi: 10.1038/s41438-021-00675-z |
| [5] |
Tan Y, Wen B, Xu L, Zong X, Sun Y, et al. 2023. High temperature inhibited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits. Frontiers in Plant Science 14:1079292 doi: 10.3389/fpls.2023.1079292 |
| [6] |
Gao HN, Jiang H, Cui JY, You CX, Li YY. 2021. Review: the effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Science 312:111024 doi: 10.1016/j.plantsci.2021.111024 |
| [7] |
Zhang S, Zhang A, Wu X, Zhu Z, Yang Z, et al. 2019. Transcriptome analysis revealed expression of genes related to anthocyanin biosynthesis in eggplant (Solanum melongena L.) under high-temperature stress. BMC Plant Biology 19:387 doi: 10.1186/s12870-019-1960-2 |
| [8] |
Li J, Ren L, Gao Z, Jiang M, Liu Y, et al. 2017. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant, Cell & Environment 40:3069−87 doi: 10.1111/pce.13074 |
| [9] |
Li S, Dong Y, Li D, Shi S, Zhao N, et al. 2024. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. Plant Physiology 194:1139−65 doi: 10.1093/plphys/kiad531 |
| [10] |
Ma Y, Ma X, Gao X, Wu W, Zhou B. 2021. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences 22:11116 doi: 10.3390/ijms222011116 |
| [11] |
Xing Y, Sun W, Sun Y, Li J, Zhang J, et al. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal 21:283−301 doi: 10.1111/pbi.13941 |
| [12] |
Wu J, Chen Y, Xu Y, An Y, Hu Z, et al. 2024. Effects of jasmonic acid on stress response and quality formation in vegetable crops and their underlying molecular mechanisms. Plants 13:1557 doi: 10.3390/plants13111557 |
| [13] |
Ghorbel M, Brini F, Sharma A, Landi M. 2021. Role of jasmonic acid in plants: the molecular point of view. Plant Cell Reports 40:1471−94 doi: 10.1007/s00299-021-02687-4 |
| [14] |
Hewedy OA, Elsheery NI, Karkour AM, Elhamouly N, Arafa RA, et al. 2023. Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany 208:105260 doi: 10.1016/j.envexpbot.2023.105260 |
| [15] |
Shan X, Zhang Y, Peng W, Wang Z, Xie D. 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany 60:3849−60 doi: 10.1093/jxb/erp223 |
| [16] |
Qi T, Song S, Ren Q, Wu D, Huang H, et al. 2011. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell 23:1795−814 doi: 10.1105/tpc.111.083261 |
| [17] |
Ma P, Pei T, Lv B, Wang M, Dong J, et al. 2022. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. Horticulture Research 9:uhac166 doi: 10.1093/hr/uhac166 |
| [18] |
Pauwels L, Goossens A. 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. The Plant Cell 23:3089−100 doi: 10.1105/tpc.111.089300 |
| [19] |
Chico JM, Chini A, Fonseca S, Solano R. 2008. JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology 11:486−94 doi: 10.1016/j.pbi.2008.06.003 |
| [20] |
Chini A, Boter M, Solano R. 2009. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. The FEBS Journal 276:4682−92 doi: 10.1111/j.1742-4658.2009.07194.x |
| [21] |
Sun Y, Liu C, Liu Z, Zhao T, Jiang J, et al. 2021. Genome-wide identification, characterization and expression analysis of the JAZ gene family in resistance to gray leaf spots in tomato. International Journal of Molecular Sciences 22:9974 doi: 10.3390/ijms22189974 |
| [22] |
Zhang H, Liu Z, Geng R, Ren M, Cheng L, et al. 2024. Genome-wide identification of the TIFY gene family in tobacco and expression analysis in response to Ralstonia solanacearum infection. Genomics 116:110823 doi: 10.1016/j.ygeno.2024.110823 |
| [23] |
Han T, Wang H, Liang Z, Bai A, Xu H, et al. 2025. Genome-wide identification of the JAZ gene family in non-heading Chinese cabbage and the functional verification of BcJAZ2 in the biosynthesis of β-caryophyllene. Vegetable Research 5:e007 doi: 10.48130/vegres-0025-0001 |
| [24] |
Pu Z, Qin T, Wang Y, Wang X, Shi N, et al. 2025. Genome-wide analysis of the JAZ gene family in potato and functional verification of StJAZ23 under drought stress. International Journal of Molecular Sciences 26:2360 doi: 10.3390/ijms26052360 |
| [25] |
Bai Y, Meng Y, Huang D, Qi Y, Chen M. 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128−36 doi: 10.1016/j.ygeno.2011.05.002 |
| [26] |
Zhou SL, Zhang JX, Jiang S, Lu Y, Huang YS, et al. 2024. Genome-wide identification of JAZ gene family in sugarcane and function analysis of ScJAZ1/2 in drought stress response and flowering regulation. Plant Physiology and Biochemistry 210:108577 doi: 10.1016/j.plaphy.2024.108577 |
| [27] |
Yan W, Dong X, Li R, Zhao X, Zhou Q, et al. 2024. Genome-wide identification of JAZ gene family members in autotetraploid cultivated alfalfa (Medicago sativa subsp. sativa) and expression analysis under salt stress. BMC Genomics 25:636 doi: 10.1186/s12864-024-10460-6 |
| [28] |
Li L, Ji G, Guan W, Qian F, Li H, et al. 2022. Genome-wide identification and variation analysis of JAZ family reveals BnaJAZ8.C03 involved in the resistance to Plasmodiophora brassicae in Brassica napus. International Journal of Molecular Sciences 23:12862 doi: 10.3390/ijms232112862 |
| [29] |
Du JF, Zhao Z, Xu WB, Wang QL, Li P, et al. 2024. Comprehensive analysis of JAZ family members in Ginkgo biloba reveals the regulatory role of the GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis. Tree Physiology 44:tpad121 doi: 10.1093/treephys/tpad121 |
| [30] |
Huang D, Li J, Chen J, Yao S, Li L, et al. 2024. Genome-wide identification and characterization of the JAZ gene family in Gynostemma pentaphyllum reveals the COI1/JAZ/MYC2 complex potential involved in the regulation of the MeJA-induced gypenoside biosynthesis. Plant Physiology and Biochemistry 214:108952 doi: 10.1016/j.plaphy.2024.108952 |
| [31] |
Lv G, Han R, Shi J, Chen K, Liu G, et al. 2023. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC Plant Biology 23:143 doi: 10.1186/s12870-023-04138-6 |
| [32] |
Zhao Z, Meng G, Zamin I, Wei T, Ma D, et al. 2023. Genome-wide identification and functional analysis of the TIFY family genes in response to abiotic stresses and hormone treatments in Tartary buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences 24:10916 doi: 10.3390/ijms241310916 |
| [33] |
Barchi L, Rabanus-Wallace MT, Prohens J, Toppino L, Padmarasu S, et al. 2021. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. The Plant Journal 107:579−96 doi: 10.1111/tpj.15313 |
| [34] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293 |
| [35] |
Neff MM, Chory J. 1998. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiology 118:27−35 doi: 10.1104/pp.118.1.27 |
| [36] |
Kim SC, Yao S, Zhang Q, Wang X. 2022. Phospholipase Dδ and phosphatidic acid mediate heat-induced nuclear localization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. The Plant Journal 112:786−99 doi: 10.1111/tpj.15981 |
| [37] |
Jiang M, Ren L, Lian H, Liu Y, Chen H. 2016. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). Plant Science 249:46−58 doi: 10.1016/j.plantsci.2016.04.001 |
| [38] |
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400−05 doi: 10.1038/nature09430 |
| [39] |
Zhou LJ, Peng J, Chen C, Wang Y, Wang Y, et al. 2025. CmBBX28-CmMYB9a module regulates petal anthocyanin accumulation in response to light in Chrysanthemum. Plant, Cell & Environment 48:3750−65 doi: 10.1111/pce.15390 |
| [40] |
Wang J, Song L, Gong X, Xu J, Li M. 2020. Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences 21:1446 doi: 10.3390/ijms21041446 |
| [41] |
Koh H, Joo H, Lim CW, Lee SC. 2023. Roles of the pepper JAZ protein CaJAZ1-03 and its interacting partner RING-type E3 ligase CaASRF1 in regulating ABA signaling and drought responses. Plant, Cell & Environment 46:3242−57 doi: 10.1111/pce.14692 |
| [42] |
Yang H, Jiang L, Bao X, Liu H, Xu Q, et al. 2025. CeJAZ3 suppresses longifolene accumulation in Casuarina equisetifolia, affecting the host preference of Anoplophora chinensis. Pest Management Science 81:2202−14 doi: 10.1002/ps.8618 |
| [43] |
Johnson LYD, Major IT, Chen Y, Yang C, Vanegas-Cano LJ, et al. 2023. Diversification of JAZ-MYC signaling function in immune metabolism. New Phytologist 239:2277−91 doi: 10.1111/nph.19114 |
| [44] |
Ju F, Wang J, Xu K, Xu Q, Liu X, et al. 2025. Genome-wide insights into the nomenclature, evolution and expression of tobacco TIFY/JAZ genes. Planta 261:103 doi: 10.1007/s00425-025-04676-3 |
| [45] |
Wu Y, Song X, Xu J, Fu B, Zhang Q, et al. 2025. Interactions between CmJAZ7 and CmMYB6/7 affect methyl jasmonate-induced anthocyanin accumulation in Chrysanthemum ray florets. Scientia Horticulturae 339:113884 doi: 10.1016/j.scienta.2024.113884 |
| [46] |
Chen KQ, Zhao XY, An XH, Tian Y, Liu DD, et al. 2017. MdHIR proteins repress anthocyanin accumulation by interacting with the MdJAZ2 protein to inhibit its degradation in apples. Scientific Reports 7:44484 doi: 10.1038/srep44484 |
| [47] |
Oblessuc PR, Obulareddy N, DeMott L, Matiolli CC, Thompson BK, et al. 2020. JAZ4 is involved in plant defense, growth, and development in Arabidopsis. The Plant Journal 101:371−83 doi: 10.1111/tpj.14548 |
| [48] |
Li S, He Y, Li L, Li D, Chen H. 2022. New insights on the regulation of anthocyanin biosynthesis in purple Solanaceous fruit vegetables. Scientia Horticulturae 297:110917 doi: 10.1016/j.scienta.2022.110917 |
| [49] |
Moglia A, Florio FE, Iacopino S, Guerrieri A, Milani AM, et al. 2020. Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L.). PLoS One 15:e0232986 doi: 10.1371/journal.pone.0235081 |
| [50] |
Zhao X, Jiang X, Li Z, Song Q, Xu C, et al. 2023. Jasmonic acid regulates lignin deposition in poplar through JAZ5-MYB/NAC interaction. Frontiers in Plant Science 14:1232880 doi: 10.3389/fpls.2023.1232880 |
| [51] |
Yu X, Cao S, Wang J, Li D, He Y. 2025. Comprehensive genomic analysis of SmbHLH genes and the role of SmbHLH93 in eggplant anthocyanin biosynthesis. Plant Cell Reports 44:36 doi: 10.1007/s00299-025-03429-6 |
| [52] |
Zhou L, Li J, He Y, Liu Y, Chen H. 2018. Functional characterization of SmCBF genes involved in abiotic stress response in eggplant (Solanum melongena). Scientia Horticulturae 233:14−21 doi: 10.1016/j.scienta.2018.01.043 |
| [53] |
Ma L, Sun Y, Ruan X, Huang PC, Wang S, et al. 2021. Genome-wide characterization of jasmonates signaling components reveals the essential role of ZmCOI1a-ZmJAZ15 action module in regulating maize immunity to Gibberella stalk rot. International Journal of Molecular Sciences 22:870 doi: 10.3390/ijms22020870 |
| [54] |
Wu S, Hu C, Zhu C, Fan Y, Zhou J, et al. 2024. The MYC2–PUB22–JAZ4 module plays a crucial role in jasmonate signaling in tomato. Molecular Plant 17:598−613 doi: 10.1016/j.molp.2024.02.006 |