| [1] |
Hazard B, Trafford K, Lovegrove A, Griffiths S, Uauy C, et al. 2020. Strategies to improve wheat for human health. Nature Food 1:475−80 doi: 10.1038/s43016-020-0134-6 |
| [2] |
Ma Z, Xie Q, Li G, Jia H, Zhou J, et al. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics 133:1541−68 doi: 10.1007/s00122-019-03525-8 |
| [3] |
Chen Y, Kistler HC, Ma Z. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology 57:15−39 doi: 10.1146/annurev-phyto-082718-100318 |
| [4] |
Zhang YZ, Li Z, Man J, Xu D, Wen L, et al. 2023. Genetic diversity of field Fusarium asiaticum and Fusarium graminearum isolates increases the risk of fungicide resistance. Phytopathology Research 5:51 doi: 10.1186/s42483-023-00206-9 |
| [5] |
Brown NA, Urban M, van de Meene AML, Hammond-Kosack KE. 2010. The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology 114:555−71 doi: 10.1016/j.funbio.2010.04.006 |
| [6] |
Thomma BPHJ, Nürnberger T, Joosten MHAJ. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell 23:4−15 doi: 10.1105/tpc.110.082602 |
| [7] |
Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology 66:487−511 doi: 10.1146/annurev-arplant-050213-040012 |
| [8] |
Métraux JP, Nawrath C, Genoud T. 2002. Systemic acquired resistance. Euphytica 124:237−43 doi: 10.1023/A:1015690702313 |
| [9] |
Li P, Zhao L, Qi F, Htwe NMPS, Li Q, et al. 2021. The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Molecular plant 14:1652−67 doi: 10.1016/j.molp.2021.06.010 |
| [10] |
Qi PF, Johnston A, Balcerzak M, Rocheleau H, Harris LJ, et al. 2012. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biology 116:413−26 doi: 10.1016/j.funbio.2012.01.001 |
| [11] |
Zhang Y, Yao D, Yu X, Cheng X, Wen L, et al. 2024. FgCWM1 modulates TaNDUFA9 to inhibit SA synthesis and reduce FHB resistance in wheat. BMC Biology 22:204 doi: 10.1186/s12915-024-02007-8 |
| [12] |
Chen Q, Lei L, Liu C, Zhang Y, Xu Q, et al. 2021. Major facilitator superfamily transporter gene FgMFS1 is essential for Fusarium graminearum to deal with salicylic acid stress and for its pathogenicity towards wheat. International Journal of Molecular Sciences 22:8497 doi: 10.3390/ijms22168497 |
| [13] |
Zavaliev R, Mohan R, Chen T, Dong X. 2020. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182:1093−1108.e18 doi: 10.1016/j.cell.2020.07.016 |
| [14] |
Ngou BPM, Ahn HK, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110−15 doi: 10.1038/s41586-021-03315-7 |
| [15] |
Peng Y, Yang J, Li X, Zhang Y. 2021. Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology 72:761−91 doi: 10.1146/annurev-arplant-081320-092855 |
| [16] |
Seyfferth C, Tsuda K. 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science 5:697−707 doi: 10.3389/fpls.2014.00697 |
| [17] |
Hao Q, Wang W, Han X, Wu J, Lyu B, et al. 2018. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Molecular Plant Pathology 19:1995−2010 doi: 10.1111/mpp.12675 |
| [18] |
Zhao L, Su P, Hou B, Wu H, Fan Y, et al. 2022. The black necrotic lesion enhanced resistance in wheat. Frontiers in Plant Science 13:926621 doi: 10.3389/fpls.2022.926621 |
| [19] |
Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell 6:1583−92 doi: 10.2307/3869945 |
| [20] |
Yu D, Chen C, Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell 13:1527−40 doi: 10.1105/TPC.010115 |
| [21] |
Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, et al. 2022. Structural basis of NPR1 in activating plant immunity. Nature 605:561−66 doi: 10.1038/s41586-022-04699-w |
| [22] |
Ding Y, Sun T, Ao K, Peng Y, Zhang Y, et al. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454−1467.e15 doi: 10.1016/j.cell.2018.03.044 |
| [23] |
Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, et al. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173:456−469.e16 doi: 10.1016/j.cell.2018.02.049 |
| [24] |
Liu Y, Sun T, Sun Y, Zhang Y, Radojičić A, et al. 2020. Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity. The Plant Cell 32:4002−16 doi: 10.1105/tpc.20.00499 |
| [25] |
Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. 2006. Genetically engineered resistance to fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-microbe Interactions 19:123 doi: 10.1094/MPMI-19-0123 |
| [26] |
Thapa G, Gunupuru LR, Hehir JG, Kahla A, Mullins E, et al. 2018. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals. Frontiers in Plant Science 9:867 doi: 10.3389/fpls.2018.00867 |
| [27] |
Lim G-H, Liu H, Yu K, Liu R, Shine MB, et al. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances 6:eaaz0478 doi: 10.1126/sciadv.aaz0478 |
| [28] |
Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S, et al. 2015. Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proceedings of the National Academy of Sciences of the United States of America 112:11407−12 doi: 10.1073/pnas.1511131112 |
| [29] |
Conconi A, Miquel M, Browse JA, Ryan CA. 1996. Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiology 111:797−803 doi: 10.1104/pp.111.3.797 |
| [30] |
Sunic K, Brkljacic L, Vukovic R, Katanic Z, Salopek-Sondi B, et al. 2023. Fusarium head blight infection induced responses of six winter wheat varieties in ascorbate–glutathione pathway, photosynthetic efficiency and stress hormones. Plants 12:2223 doi: 10.3390/plants12112223 |
| [31] |
Damveld RA, Arentshorst M, VanKuyk PA, Klis FM, van den Hondel CAMJJ, et al. 2005. Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genetics & Biology 42:873−85 doi: 10.1016/j.fgb.2005.06.006 |
| [32] |
Espinoza C, Liang Y, Stacey G. 2017. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. The Plant Journal 89:984−95 doi: 10.1111/tpj.13437 |
| [33] |
Li Y, Xue J, Wang FZ, Huang X, Gong BQ, et al. 2022. Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nature Plants 8:802−16 doi: 10.1038/s41477-022-01195-x |
| [34] |
Zhang Y-Z, Chen Q, Liu C-H, Liu Y-B, Yi P, et al. 2016. Chitin synthase gene FgCHS8 affects virulence and fungal cell wall sensitivity to environmental stress in Fusarium graminearum. Fungal Biology 120:764−74 doi: 10.1016/j.funbio.2016.02.002 |
| [35] |
Abramova N, Sertil O, Mehta S, Lowry CV. 2001. Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. Journal of Bacteriology 183:2881 doi: 10.1128/JB.183.9.2881-2887.2001 |
| [36] |
Striebeck A, Robinson DA, Schüttelkopf AW, Van Aalten DMF. 2013. Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. Open Biology 3:130022 doi: 10.1098/rsob.130022 |
| [37] |
Sooman L, Oliw EH. 2015. Discovery of a novel linoleate dioxygenase of Fusarium oxysporum and linoleate diol synthase of Colletotrichum graminicola. Lipids 50:1243−52 doi: 10.1007/s11745-015-4078-9 |
| [38] |
Zhang YZ, Wei ZZ, Liu CH, Chen Q, Xu BJ, et al. 2017. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Scientific Reports 7:46129 doi: 10.1038/srep46129 |
| [39] |
Qi PF, Zhang YZ, Liu CH, Zhu J, Chen Q, et al. 2018. Fusarium graminearum ATP-binding cassette transporter gene is required for its transportation of salicylic acid, fungicide resistance, mycelial growth and pathogenicity towards wheat. International Journal of Molecular Sciences 19:2351 doi: 10.3390/ijms19082351 |
| [40] |
Qi PF, Zhang YZ, Liu CH, Chen Q, Guo ZR, et al. 2019. Functional analysis of FgNahG clarifies the contribution of salicylic acid to wheat (Triticum aestivum) resistance against fusarium head blight. Toxins 11:59 doi: 10.3390/toxins11020059 |
| [41] |
Chen H, Xue L, Chintamanani S, Germain H, Lin H, et al. 2009. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. The Plant Cell 21:2527−40 doi: 10.1105/tpc.108.065193 |
| [42] |
Meng F, Yang C, Cao J, Chen H, Pang J, et al. 2020. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology 62:1552−73 doi: 10.1111/jipb.12922 |
| [43] |
Fan YH, Hou BQ, Su PS, Wu HY, Wang GP, et al. 2019. Application of virus-induced gene silencing for identification of FHB resistant genes. Journal of Integrative Agriculture 18:2183−92 doi: 10.1016/S2095-3119(18)62118-5 |
| [44] |
Yang T, Deng L, Wang Q, Sun C, Ali M, et al. 2024. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Molecular plant 17:509−12 doi: 10.1016/j.molp.2024.02.004 |
| [45] |
Ke PB, Liu Y, Zhang T, Sun YX, He LQ, et al. 2019. Function analysis of the key gene TaACS2 in ethylene synthesis pathway in resistance to Fusarium head blight of wheat. Acta Agriculturae Shanghai 35(2):31−33 (in Chinese) doi: 10.15955/j.issn1000-3924.2019.02.07 |
| [46] |
Li J, Brader G, Kariola T, Tapio Palva E. 2006. WRKY70 modulates the selection of signaling pathways in plant defense. Plant Journal 46:477−91 doi: 10.1111/j.1365-313X.2006.02712.x |
| [47] |
Huang P, Dong Z, Guo P, Zhang X, Qiu Y, et al. 2019. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis. The Plant Cell 32:612−29 doi: 10.1105/tpc.19.00658 |
| [48] |
Kage U, Yogendra KN, Kushalappa AC. 2017. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Scientific Reports 7:42596 doi: 10.1038/srep42596 |
| [49] |
zhao l. 2016. Mechanism of Wheat Type II Resistance to FHB and Identification of Resistant Genes. Thesis (in Chinese). Shandong Agricultural University, China |
| [50] |
Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, et al. 2012. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. The Plant Cell 24:5159−76 doi: 10.1105/tpc.112.105957 |
| [51] |
Jin M, Hu S, Wu Q, Feng X, Zhang Y, et al. 2024. An effector protein of Fusarium graminearum targets chloroplasts and suppresses cyclic photosynthetic electron flow. Plant Physiology 196:2422−36 doi: 10.1093/plphys/kiae538 |
| [52] |
Song S, Huang H, Gao H, Wang J, Wu D, et al. 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. The Plant Cell 26:263−79 doi: 10.1105/tpc.113.120394 |
| [53] |
Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. 2017. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Scientific Reports 7:7849 doi: 10.1038/s41598-017-08073-z |
| [54] |
Hu LQ, Mu JJ, Su PS, Wu HY, Yu GH, et al. 2018. Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance. Journal of Integrative Agriculture 17:368−80 doi: 10.1016/S2095-3119(17)61680-0 |
| [55] |
Zhang YZ, Man J, Xu D, Wen L, Li Y, et al. 2024. Investigating the mechanisms of isochorismate synthase: an approach to improve salicylic acid synthesis and increase resistance to Fusarium head blight in wheat. The Crop Journal 12:1054−63 doi: 10.1016/j.cj.2024.05.012 |