| [1] |
Chen SL, Yu H, Luo HM, Wu Q, Li CF, et al. 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine 11(1):37 doi: 10.1186/s13020-016-0108-7 |
| [2] |
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, et al. 2022. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry 378:131918 doi: 10.1016/j.foodchem.2021.131918 |
| [3] |
Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, et al. 2017. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology 245:1645−54 doi: 10.1016/j.biortech.2017.06.043 |
| [4] |
Zhou X, Liu Z. 2022. Unlocking plant metabolic diversity: A (pan)-genomic view. Plant Communications 3(2):100300 doi: 10.1016/j.xplc.2022.100300 |
| [5] |
Jacobowitz JR, Weng JK. 2020. Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annual Review of Plant Biology 71(1):631−58 doi: 10.1146/annurev-arplant-081519-035634 |
| [6] |
Pichersky E, Raguso RA. 2018. Why do plants produce so many terpenoid compounds? New Phytologist 220(3):692−702 doi: 10.1111/nph.14178 |
| [7] |
Lybrand DB, Xu H, Last RL, Pichersky E. 2020. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. Trends in Plant Science 25(12):1240−51 doi: 10.1016/j.tplants.2020.06.012 |
| [8] |
Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70(15):1645−51 doi: 10.1016/j.phytochem.2009.05.012 |
| [9] |
Gutzeit HO, Ludwig-Mueller J. 2014. Function of natural substances in plants. Plant Natural Products: Synthesis, Biological Functions and Practical Applications. Weinheim, Germany: Wiley-VCH. |
| [10] |
Chakraborty A, Chaudhury R, Dutta S, Basak M, Dey S, et al. 2022. Role of metabolites in flower development and discovery of compounds controlling flowering time. Plant Physiology and Biochemistry 190:109−18 doi: 10.1016/j.plaphy.2022.09.002 |
| [11] |
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172(1-2):249−261.e12 doi: 10.1016/j.cell.2017.12.019 |
| [12] |
Tieman D, Zhu G, Resende MFR Jr, Lin T, Nguyen C, et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science 355:391−94 doi: 10.1126/science.aal1556 |
| [13] |
Forss DA, Dunstone EA, Ramshaw EH, Stark W. 1962. The flavor of cucumbers. Journal of Food Science 27(1):90−93 doi: 10.1111/j.1365-2621.1962.tb00064.x |
| [14] |
Jeon JE, Kim JG, Fischer CR, Mehta N, Dufour-Schroif C, et al. 2020. A pathogen-responsive gene cluster for highly modified fatty acids in tomato. Cell 180(1):176−187.e19 doi: 10.1016/j.cell.2019.11.037 |
| [15] |
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940−43 doi: 10.1038/nature04640 |
| [16] |
Smith AB, Chekan JR. 2023. Engineering yeast for industrial-level production of the antimalarial drug artemisinin. Trends in Biotechnology 41(3):267−69 doi: 10.1016/j.tibtech.2022.12.007 |
| [17] |
Weaver BA. 2014. How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell 25(18):2677−81 doi: 10.1091/mbc.e14-04-0916 |
| [18] |
Kohnen-Johannsen KL, Kayser O. 2019. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 24(4):796 doi: 10.3390/molecules24040796 |
| [19] |
Jahan T, Huda MdN, Zhang K, He Y, Lai D, et al. 2025. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnology Advances 79:108520 doi: 10.1016/j.biotechadv.2025.108520 |
| [20] |
Li Q, Duncan S, Li Y, Huang S, Luo M. 2024. Decoding plant specialized metabolism: new mechanistic insights. Trends in Plant Science 29(5):535−45 doi: 10.1016/j.tplants.2023.11.015 |
| [21] |
Zhang T, Zhang C, Wang W, Hu S, Tian Q, et al. 2025. Effects of drought stress on the secondary metabolism of Scutellaria baicalensis Georgi and the function of SbWRKY34 in drought resistance. Plant Physiology and Biochemistry 219:109362 doi: 10.1016/j.plaphy.2024.109362 |
| [22] |
Zhang F, Huang J, Guo H, Yang C, Li Y, et al. 2022. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice. Science China Life Sciences 65(7):1380−94 doi: 10.1007/s11427-021-2036-5 |
| [23] |
Castillon A, Shen H, Huq E. 2007. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends in Plant Science 12(11):514−21 doi: 10.1016/j.tplants.2007.10.001 |
| [24] |
Zhang Z, Zhang X, Chen Y, Jiang W, Zhang J, et al. 2023. Understanding the mechanism of red light-induced melatonin biosynthesis facilitates the engineering of melatonin-enriched tomatoes. Nature Communications 14:5525 doi: 10.1038/s41467-023-41307-5 |
| [25] |
Li Y, Chen Y, Zhou L, You S, Deng H, et al. 2020. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle. Molecular Plant 13(8):1203−18 doi: 10.1016/j.molp.2020.06.005 |
| [26] |
Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, et al. 2014. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084−88 doi: 10.1126/science.1259215 |
| [27] |
Zhang Z, Liang C, Ren Y, Lv Z, Huang J. 2024. Interaction of ubiquitin-like protein SILENCING DEFECTIVE 2 with LIKE HETEROCHROMATIN PROTEIN 1 is required for regulation of anthocyanin biosynthesis in Arabidopsis thaliana in response to sucrose. New Phytologist 243(4):1374−86 doi: 10.1111/nph.19725 |
| [28] |
Chen W, Wang X, Sun J, Wang X, Zhu Z, et al. 2024. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nature Communications 15(1):4295 doi: 10.1038/s41467-024-48643-0 |
| [29] |
Weng JK, Philippe RN, Noel JP. 2012. The rise of chemodiversity in plants. Science 336:1667−70 doi: 10.1126/science.1217411 |
| [30] |
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. Molecular Plant 14(8):1244−65 doi: 10.1016/j.molp.2021.06.028 |
| [31] |
Zhang P, Zhang Z, Zhang L, Wang J, Wu C. 2020. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Computational and Structural Biotechnology Journal 18:1383−90 doi: 10.1016/j.csbj.2020.06.003 |
| [32] |
Kong W, Wang Y, Zhang S, Yu J, Zhang X. 2023. Recent advances in assembly of complex plant genomes. Genomics, Proteomics & Bioinformatics 21(3):427−39 doi: 10.1016/j.gpb.2023.04.004 |
| [33] |
Su W, Jing Y, Lin S, Yue Z, Yang X, et al. 2021. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proceedings of the National Academy of Sciences of the United States of America 118(20):e2101767118 doi: 10.1073/pnas.2101767118 |
| [34] |
Han X, Zhang J, Han S, Chong SL, Meng G, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications 3(6):100410 doi: 10.1016/j.xplc.2022.100410 |
| [35] |
Yang J, Wu Y, Zhang P, Ma J, Yao YJ, et al. 2023. Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family. Nature Communications 14(1):8457 doi: 10.1038/s41467-023-44246-3 |
| [36] |
Li P, Yan MX, Liu P, Yang DJ, He ZK, et al. 2024. Multiomics analyses of two Leonurus species illuminate leonurine biosynthesis and its evolution. Molecular Plant 17(1):158−77 doi: 10.1016/j.molp.2023.11.003 |
| [37] |
Qin L, Hu Y, Wang J, Wang X, Zhao R, et al. 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nature Plants 7(9):1239−53 doi: 10.1038/s41477-021-00990-2 |
| [38] |
Zhan C, Shen S, Yang C, Liu Z, Fernie AR, et al. 2022. Plant metabolic gene clusters in the multi-omics era. Trends in Plant Science 27(10):981−1001 doi: 10.1016/j.tplants.2022.03.002 |
| [39] |
Yang C, Shen S, Zhan C, Li Y, Zhang R, et al. 2024. Variation in a Poaceae-conserved fatty acid metabolic gene cluster controls rice yield by regulating male fertility. Nature Communications 15(1):6663 doi: 10.1038/s41467-024-51145-8 |
| [40] |
Sun W, Yin Q, Wan H, Gao R, Xiong C, et al. 2023. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis. Nature Communications 14(1):6470 doi: 10.1038/s41467-023-42253-y |
| [41] |
Polturak G, Dippe M, Stephenson MJ, Chandra Misra R, Owen C, et al. 2022. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proceedings of the National Academy of Sciences of the United States of Americ 119(16):e2123299119 doi: 10.1073/pnas.2123299119 |
| [42] |
Field B, Osbourn AE. 2008. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320:543−47 |
| [43] |
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, et al. 2020. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 9:e56717 doi: 10.7554/eLife.56717 |
| [44] |
Liu Z, Cheema J, Vigouroux M, Hill L, Reed J, et al. 2020. Formation and diversification of a paradigm biosynthetic gene cluster in plants. Nature Communications 11:5354 doi: 10.1038/s41467-020-19153-6 |
| [45] |
Mao L, Kawaide H, Higuchi T, Chen M, Miyamoto K, et al. 2020. Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants. PProceedings of the National Academy of Sciences of the United States of America 117(22):12472−80 doi: 10.1073/pnas.1914373117 |
| [46] |
Berman P, De Haro LA, Jozwiak A, Panda S, Pinkas Z, et al. 2023. Parallel evolution of cannabinoid biosynthesis. Nature Plants 9(5):817−31 doi: 10.1038/s41477-023-01402-3 |
| [47] |
Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, et al. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277:696−99 doi: 10.1126/science.277.5326.696 |
| [48] |
Von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. 2001. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. The Plant Journal 28(6):633−42 doi: 10.1046/j.1365-313x.2001.01161.x |
| [49] |
Winzer T, Gazda V, He Z, Kaminski F, Kern M, et al. 2012. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704−8 doi: 10.1126/science.1220757 |
| [50] |
Jo S, El-Demerdash A, Owen C, Srivastava V, Wu D, et al. 2024. Unlocking saponin biosynthesis in soapwort. Nature Chemical Biology 21:215−26 doi: 10.1038/s41589-024-01681-7 |
| [51] |
Liu Y, Wang B, Shu S, Li Z, Song C, et al. 2021. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nature Communications 12:3276 doi: 10.1038/s41467-021-23611-0 |
| [52] |
Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. 2017. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Research 45(W1):W55−W63 doi: 10.1093/nar/gkx305 |
| [53] |
Xiong X, Gou J, Liao Q, Li Y, Zhou Q, et al. 2021. The Taxus genome provides insights into paclitaxel biosynthesis. Nature Plants 7(8):1026−36 doi: 10.1038/s41477-021-00963-5 |
| [54] |
Jiang B, Gao L, Wang H, Sun Y, Zhang X, et al. 2024. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 383:622−29 doi: 10.1126/science.adj3484 |
| [55] |
Liu C, Smit SJ, Dang J, Zhou P, Godden GT, et al. 2023. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. Molecular Plant 16(3):533−48 doi: 10.1016/j.molp.2023.01.004 |
| [56] |
Forman V, Luo D, Geu-Flores F, Lemcke R, Nelson DR, et al. 2022. A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nature Communications 13(1):5143 doi: 10.1038/s41467-022-32879-9 |
| [57] |
Wu S, Malaco Morotti AL, Wang S, Wang Y, Xu X, et al. 2022. Convergent gene clusters underpin hyperforin biosynthesis in St John's wort. New Phytologist 235(2):646−61 doi: 10.1111/nph.18138 |
| [58] |
Li Y, Leveau A, Zhao Q, Feng Q, Lu H, et al. 2021. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nature Communications 12(1):2563 doi: 10.1038/s41467-021-22920-8 |
| [59] |
Sun Y, Shao J, Liu H, Wang H, Wang G, et al. 2023. A chromosome-level genome assembly reveals that tandem-duplicated CYP706V oxidase genes control oridonin biosynthesis in the shoot apex of Isodon rubescens. Molecular Plant 16(3):517−32 doi: 10.1016/j.molp.2022.12.007 |
| [60] |
Zhang Y, Gao J, Ma L, Tu L, Hu T, et al. 2023. Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae. Nature Communications 14(1):875 doi: 10.1038/s41467-023-36353-y |
| [61] |
Boachon B, Burdloff Y, Ruan JX, Rojo R, Junker RR, et al. 2019. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome. The Plant Cell 31(12):2947−72 doi: 10.1105/tpc.19.00320 |
| [62] |
Abdollahi F, Alebrahim MT, Ngov C, Lallemand E, Zheng Y, et al. 2021. Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed. New Phytologist 229(6):3253−68 doi: 10.1111/nph.17126 |
| [63] |
Cankar K, van Houwelingen A, Goedbloed M, Renirie R, de Jong RM, et al. 2014. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis). FEBS Letters 588(6):1001−7 doi: 10.1016/j.febslet.2014.01.061 |
| [64] |
Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. 2001. Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal 28(1):95−104 doi: 10.1046/j.1365-313X.2001.01133.x |
| [65] |
Hansen CC, Sørensen M, Veiga TAM, Zibrandtsen JFS, Heskes AM, et al. 2018. Reconfigured cyanogenic glucoside biosynthesis in Eucalyptus cladocalyx involves a cytochrome P450 CYP706C55. Plant Physiology 178(3):1081−95 doi: 10.1104/pp.18.00998 |
| [66] |
Shi J, Tian Z, Lai J, Huang X. 2023. Plant pan-genomics and its applications. Molecular Plant 16(1):168−86 doi: 10.1016/j.molp.2022.12.009 |
| [67] |
Luo J. 2015. Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology 24:31−38 doi: 10.1016/j.pbi.2015.01.006 |
| [68] |
Tibbs Cortes L, Zhang Z, Yu J. 2021. Status and prospects of genome-wide association studies in plants. The Plant Genome 14(1):e20077 doi: 10.1002/tpg2.20077 |
| [69] |
Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51(6):1044−51 doi: 10.1038/s41588-019-0410-2 |
| [70] |
Alonge M, Wang X, Benoit M, Soyk S, Pereira L, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182(1):145−161.e23 doi: 10.1016/j.cell.2020.05.021 |
| [71] |
Yuan P, Xu C, He N, Lu X, Zhang X, et al. 2023. Watermelon domestication was shaped by stepwise selection and regulation of the metabolome. Science China Life Sciences 66(3):579−94 doi: 10.1007/s11427-022-2198-5 |
| [72] |
Coe K, Bostan H, Rolling W, Turner-Hissong S, Macko-Podgórni A, et al. 2023. Population genomics identifies genetic signatures of carrot domestication and improvement and uncovers the origin of high-carotenoid orange carrots. Nature Plants 9(10):1643−58 doi: 10.1038/s41477-023-01526-6 |
| [73] |
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, et al. 2024. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nature Genetics 56(3):530−40 doi: 10.1038/s41588-024-01660-7 |
| [74] |
Zhou H, Xia D, Li P, Ao Y, Xu X, et al. 2021. Genetic architecture and key genes controlling the diversity of oil composition in rice grains. Molecular Plant 14(3):456−69 doi: 10.1016/j.molp.2020.12.001 |
| [75] |
Huang Y, He J, Xu Y, Zheng W, Wang S, et al. 2023. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nature Genetics 55(11):1964−75 doi: 10.1038/s41588-023-01516-6 |
| [76] |
Shen S, Wang S, Yang C, Wang C, Zhou Q, et al. 2023. Elucidation of the melitidin biosynthesis pathway in pummelo. Journal of Integrative Plant Biology 65(11):2505−18 doi: 10.1111/jipb.13564 |
| [77] |
Peng Z, Song L, Chen M, Liu Z, Yuan Z, et al. 2024. Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus. Proceedings of the National Academy of Sciences of the United States of America 121(14):e2321615121 doi: 10.1073/pnas.2321615121 |
| [78] |
Liu Z, Wang N, Su Y, Long Q, Peng Y, et al. 2024. Grapevine pangenome facilitates trait genetics and genomic breeding. Nature Genetics 56:2804−14 doi: 10.1038/s41588-024-01967-5 |
| [79] |
Chao J, Wu S, Shi M, Xu X, Gao Q, et al. 2023. Genomic insight into domestication of rubber tree. Nature Communications 14:4651 doi: 10.1038/s41467-023-40304-y |
| [80] |
Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, et al. 2022. Natural history–guided omics reveals plant defensive chemistry against leafhopper pests. Science 375:eabm2948 doi: 10.1126/science.abm2948 |
| [81] |
Huang XQ, Dudareva N. 2023. Plant specialized metabolism. Current Biology 33(11):R473−R478 doi: 10.1016/j.cub.2023.01.057 |
| [82] |
Schilmiller AL, Last RL, Pichersky E. 2008. Harnessing plant trichome biochemistry for the production of useful compounds. The Plant journal 54:4702−11 doi: 10.1111/j.1365-313X.2008.03432.x |
| [83] |
Li D, Heiling S, Baldwin IT, Gaquerel E. 2016. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences of the United States of America 113(47):E7610−E7618 doi: 10.1073/pnas.1610218113 |
| [84] |
Creelman RA, Mullet JE. 1997. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology 48(1):355−81 doi: 10.1146/annurev.arplant.48.1.355 |
| [85] |
Omranian N, Kleessen S, Tohge T, Klie S, Basler G, et al. 2015. Differential metabolic and coexpression networks of plant metabolism. Trends in Plant Science 20(5):266−68 doi: 10.1016/j.tplants.2015.02.002 |
| [86] |
Saito K, Matsuda F. 2010. Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology 61(1):463−89 doi: 10.1146/annurev.arplant.043008.092035 |
| [87] |
Wang P, Moore BM, Uygun S, Lehti-Shiu MD, Barry CS, et al. 2021. Optimising the use of gene expression data to predict plant metabolic pathway memberships. New Phytologist 231(1):475−89 doi: 10.1111/nph.17355 |
| [88] |
Jiang Z, Tu L, Yang W, Zhang Y, Hu T, et al. 2021. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Communications 2(1):100113 doi: 10.1016/j.xplc.2020.100113 |
| [89] |
Zhao Y, Hansen NL, Duan YT, Prasad M, Motawia MS, et al. 2023. Biosynthesis and biotechnological production of the anti-obesity agent celastrol. Nature Chemistry 15(9):1236−46 doi: 10.1038/s41557-023-01245-7 |
| [90] |
Schotte C, Jiang Y, Grzech D, Dang TT, Laforest LC, et al. 2023. Directed biosynthesis of mitragynine stereoisomers. Journal of the American Chemical Society 145(9):4957−63 doi: 10.1021/jacs.2c13644 |
| [91] |
Nett RS, Dho Y, Tsai C, Passow D, Martinez Grundman J, Low Y-Y, Sattely ES. 2023. Plant carbonic anhydrase-like enzymes in neuroactive alkaloid biosynthesis. Nature |
| [92] |
Hong B, Grzech D, Caputi L, Sonawane P, López CER, et al. 2022. Biosynthesis of strychnine. Nature 607:617−22 doi: 10.1038/s41586-022-04950-4 |
| [93] |
Zhang Y, Wiese L, Fang H, Alseekh S, Perez de Souza L, et al. 2023. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. Molecular Plant 16(12):1951−61 doi: 10.1016/j.molp.2023.10.016 |
| [94] |
Zhao Y, Liang F, Xie Y, Duan YT, Andeadelli A, et al. 2024. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 enzyme. Journal of the American Chemical Society 146(1):801−10 doi: 10.1021/jacs.3c10864 |
| [95] |
Kang M, Fu R, Zhang P, Lou S, Yang X, et al. 2021. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature Communications 12:3531 doi: 10.1038/s41467-021-23872-9 |
| [96] |
Li W, Lybrand DB, Zhou F, Last RL, Pichersky E. 2019. Pyrethrin biosynthesis: the cytochrome P450 oxidoreductase CYP82Q3 converts jasmolone to pyrethrolone. Plant Physiology 181(3):934−44 doi: 10.1104/pp.19.00499 |
| [97] |
Xu H, Li W, Schilmiller AL, Van Eekelen H, De Vos RCH, et al. 2019. Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytologist 223(2):751−65 doi: 10.1111/nph.15821 |
| [98] |
Li W, Zhou F, Pichersky E. 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides. Plant Physiology 177(4):1498−509 doi: 10.1104/pp.18.00748 |
| [99] |
Li W, Lybrand DB, Xu H, Zhou F, Last RL, et al. 2020. A trichome-specific, plastid-localized Tanacetum cinerariifolium nudix protein hydrolyzes the natural pyrethrin pesticide biosynthetic intermediate trans-chrysanthemyl diphosphate. Frontiers in Plant Science 11:482 doi: 10.3389/fpls.2020.00482 |
| [100] |
De La Peña R, Hodgson H, Liu JC-T, Stephenson MJ, Martin AC, Owen C, Harkess A, Leebens-Mack J, Jimenez LE, Osbourn A, Sattely ES. 2023. Complex scaffold remodeling in plant triterpene biosynthesis. Science 379:361−68 doi: 10.1126/science.adf1017 |
| [101] |
Nett RS, Dho Y, Low YY, Sattely ES. 2021. A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 118(24):e2102949118 doi: 10.1073/pnas.2102949118 |
| [102] |
Nett RS, Lau W, Sattely ES. 2020. Discovery and engineering of colchicine alkaloid biosynthesis. Nature 584:148−53 doi: 10.1038/s41586-020-2546-8 |
| [103] |
Tu L, Su P, Zhang Z, Gao L, Wang J, et al. 2020. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nature Communications 11:971 doi: 10.1038/s41467-020-14776-1 |
| [104] |
Zeng J, Liu X, Dong Z, Zhang F, Qiu F, et al. 2024. Discovering a mitochondrion-localized BAHD acyltransferase involved in calystegine biosynthesis and engineering the production of 3β-tigloyloxytropane. Nature Communications 15:3623 doi: 10.1038/s41467-024-47968-0 |
| [105] |
Reed J, Orme A, El-Demerdash A, Owen C, Martin LBB, et al. 2023. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. Science 379:1252−64 doi: 10.1126/science.adf3727 |
| [106] |
Hu J, Qiu S, Wang F, Li Q, Xiang CL, et al. 2023. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia. Nature Communications 14:4696 doi: 10.1038/s41467-023-40401-y |
| [107] |
Florean M, Luck K, Hong B, Nakamura Y, O'Connor SE, et al. 2023. Reinventing metabolic pathways: independent evolution of benzoxazinoids in flowering plants. Proceedings of the National Academy of Sciences of the United States of America 120(42):e2307981120 doi: 10.1073/pnas.2307981120 |
| [108] |
Wang HT, Wang ZL, Chen K, Yao MJ, Zhang M, et al. 2023. Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants. Nature Communications 14:6658 doi: 10.1038/s41467-023-42393-1 |
| [109] |
Chavez BG, Srinivasan P, Glockzin K, Kim N, Montero Estrada O, et al. 2022. Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform. Proceedings of the National Academy of Sciences 119(49):e2215372119 doi: 10.1073/pnas.2215372119 |
| [110] |
Deng X, Ye Z, Duan J, Chen F, Zhi Y, et al. 2024. Complete pathway elucidation and heterologous reconstitution of (+)-nootkatone biosynthesis from Alpinia oxyphylla. New Phytologist 241:779−92 doi: 10.1111/nph.19375 |
| [111] |
Edwards A, Njaci I, Sarkar A, Jiang Z, Kaithakottil GG, et al. 2023. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nature Communications 14(1):876 doi: 10.1038/s41467-023-36503-2 |
| [112] |
Bhandari DR, Wang Q, Friedt W, Spengler B, Gottwald S, et al. 2015. High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas. Analyst 140(22):7696−709 doi: 10.1039/C5AN01065A |
| [113] |
Horn PJ, Chapman KD. 2024. Imaging plant metabolism in situ. Journal of Experimental Botany 75(6):1654−70 doi: 10.1093/jxb/erad423 |
| [114] |
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. 2024. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. Cell 187(20):5620−5637.e10 doi: 10.1016/j.cell.2024.08.027 |
| [115] |
Liu Z, Zhou Y, Guo J, Li J, Tian Z, et al. 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant 13(8):1178−93 doi: 10.1016/j.molp.2020.06.010 |
| [116] |
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, et al. 2021. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Developmental Cell 56(7):1043−1055.e4 doi: 10.1016/j.devcel.2021.03.014 |
| [117] |
Dai Y, Zhang S, Guan J, Wang S, Zhang H, et al. 2024. Single-cell transcriptomic analysis of flowering regulation and vernalization in Chinese cabbage shoot apex. Horticulture Research 11:uhae214 doi: 10.1093/hr/uhae214 |
| [118] |
Lin JL, Chen L, Wu WK, Guo XX, Yu CH, et al. 2023. Single-cell RNA sequencing reveals a hierarchical transcriptional regulatory network of terpenoid biosynthesis in cotton secretory glandular cells. Molecular Plant 16(12):1990−2003 doi: 10.1016/j.molp.2023.10.008 |
| [119] |
Wu S, Morotti ALM, Yang J, Wang E, Tatsis EC. 2024. Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. Molecular Plant 17:1439−57 doi: 10.1016/j.molp.2024.08.003 |
| [120] |
McClune CJ, Liu JCT, Wick C, De La Peña R, Lange BM, et al. 2024. Multiplexed perturbation of yew reveals cryptic proteins that enable a total biosynthesis of baccatin III and Taxol precursors. bioRxiv Preprint doi: 10.1101/2024.11.06.622305 |
| [121] |
Berman P, de Haro LA, Cavaco AR, Panda S, Dong Y, et al. 2024. The biosynthetic pathway of the hallucinogen mescaline and its heterologous reconstruction. Molecular Plant 17(7):1129−50 doi: 10.1016/j.molp.2024.05.012 |
| [122] |
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, et al. 2024. Artificial intelligence in plant breeding. Trends in Genetics 40(10):891−908 doi: 10.1016/j.tig.2024.07.001 |
| [123] |
Raza SEA, Smith HK, Clarkson GJJ, Taylor G, Thompson AJ, et al. 2014. Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PLoS ONE 9(6):e97612 doi: 10.1371/journal.pone.0097612 |
| [124] |
Gené-Mola J, Gregorio E, Auat Cheein F, Guevara J, Llorens J, et al. 2020. Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Computers and Electronics in Agriculture 168:105121 doi: 10.1016/j.compag.2019.105121 |
| [125] |
Ritharson PI, Raimond K, Mary XA, Robert JE, J A. 2024. DeepRice: a deep learning and deep feature based classification of rice leaf disease subtypes. Artificial Intelligence in Agriculture 11:34−49 doi: 10.1016/j.aiia.2023.11.001 |
| [126] |
Moore BM, Wang P, Fan P, Leong B, Schenck CA, et al. 2019. Robust predictions of specialized metabolism genes through machine learning. Proceedings of the National Academy of Sciences of the United States of America 116(6):2344−53 doi: 10.1073/pnas.1817074116 |
| [127] |
Wang P, Schumacher AM, Shiu SH. 2022. Computational prediction of plant metabolic pathways. Current Opinion in Plant Biology 66:102171 doi: 10.1016/j.pbi.2021.102171 |
| [128] |
Xiao H, Liu Z, Wang N, Long Q, Cao S, et al. 2023. Adaptive and maladaptive introgression in grapevine domestication. Proceedings of the National Academy of Sciences of the United States of America 120(24):e2222041120 doi: 10.1073/pnas.2222041120 |
| [129] |
Feng W, Gao P, Wang X. 2024. AI breeder: Genomic predictions for crop breeding. New Crops 1:100010 doi: 10.1016/j.ncrops.2023.12.005 |
| [130] |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583−89 doi: 10.1038/s41586-021-03819-2 |
| [131] |
Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493−500 doi: 10.1038/s41586-024-07487-w |
| [132] |
Baek M, McHugh R, Anishchenko I, Jiang H, Baker D, et al. 2024. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nature Methods 21(1):117−21 doi: 10.1038/s41592-023-02086-5 |
| [133] |
Yao Y, Chen F, Wu C, Chang X, Cheng W, et al. 2025. Structure-based virtual screening aids the identification of glycosyltransferases in the biosynthesis of salidroside. Plant Biotechnology Journal 23(5):1725−35 doi: 10.1111/pbi.70002 |
| [134] |
Liu M, Li Y, Li H. 2022. Deep learning to predict the biosynthetic gene clusters in bacterial genomes. Journal of Molecular Biology 434(15):167597 doi: 10.1016/j.jmb.2022.167597 |
| [135] |
Rios-Martinez C, Bhattacharya N, Amini AP, Crawford L, Yang KK. 2023. Deep self-supervised learning for biosynthetic gene cluster detection and product classification. PLOS Computational Biology 19(5):e1011162 doi: 10.1371/journal.pcbi.1011162 |
| [136] |
Yang B, Meng T, Wang X, Li J, Zhao S, et al. 2024. CAT Bridge: an efficient toolkit for gene–metabolite association mining from multiomics data. GigaScience 132:giae083 doi: 10.1093/gigascience/giae083 |
| [137] |
Cui H, Wang C, Maan H, Pang K, Luo F, et al. 2024. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nature Methods 21(8):1470−80 doi: 10.1038/s41592-024-02201-0 |
| [138] |
Moreno-Paz S, van der Hoek R, Eliana E, Zwartjens P, Gosiewska S, et al. 2024. Machine learning-guided optimization of p-Coumaric acid production in yeast. ACS Synthetic Biology 13:1312−22 doi: 10.1021/acssynbio.4c00035 |
| [139] |
Moreno-Paz S, Schmitz J, Suarez-Diez M. 2024. In silico analysis of design of experiment methods for metabolic pathway optimization. Computational and Structural Biotechnology Journal 23:1959−67 doi: 10.1016/j.csbj.2024.04.062 |
| [140] |
Moreno-Paz S, van der Hoek R, Eliana E, Martins dos Santos VAP, Schmitz J, et al. 2024. Combinatorial optimization of pathway, process and media for the production of p-coumaric acid by Saccharomyces cerevisiae. Microbial Biotechnology 17(3):e14424 doi: 10.1111/1751-7915.14424 |
| [141] |
Zheng S, Zeng T, Li C, Chen B, Coley CW, et al. 2022. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nature Communications 13:3342 doi: 10.1038/s41467-022-30970-9 |
| [142] |
Misra RC, Garg A, Roy S, Chanotiya CS, Vasudev PG, et al. 2015. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata. Plant Science 240:50−64 doi: 10.1016/j.plantsci.2015.08.016 |
| [143] |
Wang J, Lin HX, Su P, Chen T, Guo J, et al. 2019. Molecular cloning and functional characterization of multiple geranylgeranyl pyrophosphate synthases (ApGGPPS) from Andrographis paniculata. Plant Cell Reports 38:117−28 doi: 10.1007/s00299-018-2353-y |
| [144] |
Durairaj P, Li S. 2022. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Engineering Microbiology 2:100011 doi: 10.1016/j.engmic.2022.100011 |
| [145] |
Qiu S, Wang J, Pei T, Gao R, Xiang C, et al. 2025. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. Plant Communications 6:101134 doi: 10.1016/j.xplc.2024.101134 |
| [146] |
Li Q, Jiao X, Li X, Shi W, Ma Y, et al. 2024. Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast. Journal of Integrative Plant Biology 66(8):1703−17 doi: 10.1111/jipb.13724 |
| [147] |
Li C, Li Y, Wang J, Lu F, Zheng L, et al. 2025. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. The Plant Journal 121(2):e17199 doi: 10.1111/tpj.17199 |
| [148] |
Wang J, Xie Q, Wang X, Long M, Chen Y, et al. 2025. Discovery of key cytochrome P450 monooxygenase (C20ox) enables the complete synthesis of tripterifordin and neotripterifordin. ACS Catalysis 15(3):2690−702 doi: 10.1021/acscatal.4c07121 |
| [149] |
Li Y, Xu J, Li G, Wan S, Batistič O, et al. 2019. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. Journal of Experimental Botany 70(19):5205−16 doi: 10.1093/jxb/erz282 |
| [150] |
Zhu Q, Yu S, Zeng D, Liu H, Wang H, et al. 2017. Development of "Purple Endosperm Rice" by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Molecular Plant 10(7):918−29 doi: 10.1016/j.molp.2017.05.008 |
| [151] |
Liao J, Liu T, Xie L, Mo C, Qiao J, et al. 2023. Heterologous mogrosides biosynthesis in cucumber and tomato by genetic manipulation. Communications Biology 6:191 doi: 10.1038/s42003-023-04553-3 |
| [152] |
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, et al. 2020. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nature Communications 11:5802 doi: 10.1038/s41467-020-19631-x |
| [153] |
Cheng Y, Wang X, Cao L, Ji J, Liu T, et al. 2021. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17:73 doi: 10.1186/s13007-021-00778-7 |
| [154] |
Zhu Y, Zhu X, Wen Y, Wang L, Wang Y, et al. 2024. Plant hairy roots: Induction, applications, limitations and prospects. Industrial Crops and Products 219:119104 doi: 10.1016/j.indcrop.2024.119104 |
| [155] |
Han W, Xu J, Wan H, Zhou L, Wu B, et al. 2022. Overexpression of BcERF3 increases the biosynthesis of saikosaponins in Bupleurum chinense. FEBS Open Bio 12(7):1344−52 doi: 10.1002/2211-5463.13412 |
| [156] |
Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal 39(5):734−46 doi: 10.1111/j.1365-313X.2004.02158.x |
| [157] |
Liu Y, Lyu R, Singleton JJ, Patra B, Pattanaik S, et al. 2024. A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants. Plant Methods 20(1):26 doi: 10.1186/s13007-024-01154-x |
| [158] |
Yadav S, Badajena S, Khare P, Sundaresan V, Shanker K, Mani DN, Shukla AK. 2025. Transcriptomic insight into zinc dependency of vindoline accumulation in Catharanthus roseus leaves: relevance and potential role of a CrZIP. Plant Cell Reports 44(2):43 doi: 10.1007/s00299-025-03427-8 |
| [159] |
Garg A, Srivastava P, Verma PC, Ghosh S. 2024. ApCPS2 contributes to medicinal diterpenoid biosynthesis and defense against insect herbivore in Andrographis paniculata. Plant Science 342:112046 doi: 10.1016/j.plantsci.2024.11204 |
| [160] |
Liu S, Zhang H, Meng Z, Jia Z, Fu F, Jin B, Cao F, Wang L. 2025. The LncNAT11–MYB11–F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba. Journal of Experimental Botany 76(4):1179−201 doi: 10.1093/jxb/erae438 |
| [161] |
Cheng G, Shu X, Wang Z, Wang N, Zhang F. 2023. Establishing a Virus-Induced Gene Silencing System in Lycoris chinensis. Plants 12(13):2458 doi: 10.3390/plants12132458 |
| [162] |
Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528−32 doi: 10.1038/nature12051 |
| [163] |
Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, et al. 2022. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 609:341−47 doi: 10.1038/s41586-022-05157-3 |
| [164] |
Gao J, Zuo Y, Xiao F, Wang Y, Li D, et al. 2023. Biosynthesis of catharanthine in engineered Pichia pastoris. Nature Synthesis 2(3):231−42 doi: 10.1038/s44160-022-00205-2 |
| [165] |
Gu Y, Jiang Y, Li C, Zhu J, Lu X, et al. 2024. High titer production of gastrodin enabled by systematic refactoring of yeast genome and an antisense-transcriptional regulation toolkit. Metabolic Engineering 82:250−61 doi: 10.1016/j.ymben.2024.02.016 |
| [166] |
Wu Y, Li S, Sun B, Guo J, Zheng M, et al. 2024. Enhancing gastrodin production in Yarrowia lipolytica by metabolic engineering. ACS Synthetic Biology 13(4):1332−42 doi: 10.1021/acssynbio.4c00050 |
| [167] |
Liu M, Wang C, Ren X, Gao S, Yu S, et al. 2022. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica. Bioresource Technology 365:128178 doi: 10.1016/j.biortech.2022.128178 |
| [168] |
Srinivasan P, Smolke CD. 2020. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585:614−19 doi: 10.1038/s41586-020-2650-9 |
| [169] |
Liu Y, Zhao X, Gan F, Chen X, Deng K, et al. 2024. Complete biosynthesis of QS-21 in engineered yeast. Nature 629:937−44 doi: 10.1038/s41586-024-07345-9 |