Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, et al. 2018a. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology 24:4816−26

doi: 10.1111/gcb.14394

Chen J, Luo Y, Li J, Zhou X, Cao J, et al. 2017. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology 23:1328−37

doi: 10.1111/gcb.13402

Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, et al. 2018b. A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances 4:eaaq1689

doi: 10.1126/sciadv.aaq1689

Chen J, Sinsabaugh RL. 2021. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology 27:1322−25

doi: 10.1111/gcb.15506

Chen J, van Groenigen KJ, Hungate BA, Terrer C, van Groenigen JW, et al. 2020. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology 26:5077−86

doi: 10.1111/gcb.15218

Chen W, Meng J, Han X, Lan Y, Zhang W. 2019. Past, present, and future of biochar. Biochar 1:75−87

doi: 10.1007/s42773-019-00008-3

Du Z, Wang Y, Huang J, Lu N, Liu X, et al. 2014. Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science 179:75−83

doi: 10.1097/SS.0000000000000050

Feng J, Yu D, Sinsabaugh RL, Moorhead DL, Andersen MN, et al. 2023. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biological Reviews 98:1184−99

doi: 10.1111/brv.12949

German DP, Marcelo KRB, Stone MM, Allison SD. 2012. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Global Change Biology 18:1468−79

doi: 10.1111/j.1365-2486.2011.02615.x

Gunina A, Kuzyakov Y. 2022. From energy to (soil organic) matter. Global Change Biology 28:2169−82

doi: 10.1111/gcb.16071

Han M, Zhao Q, Li W, Ciais P, Wang YP, et al. 2022. Global soil organic carbon changes and economic revenues with biochar application. Global Change Biology Bioenergy 14:364−77

doi: 10.1111/gcbb.12915

Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J. 2014. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73:35−46

doi: 10.1016/j.orggeochem.2014.05.001

Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, et al. 2021. Biochar in climate change mitigation. Nature Geoscience 14:883−92

doi: 10.1038/s41561-021-00852-8

Lehmann J, Kuzyakov Y, Pan G, Ok YS. 2015. Biochars and the plant-soil interface. Plant and Soil 395:1−5

doi: 10.1007/s11104-015-2658-3

Lehmann J, Joseph S. 2015. Biochar for environmental management: an introduction. In Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. London: Routledge. pp. 1−13. doi: 10.4324/9780203762264

Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over storage. Nature Microbiology 2:17105

doi: 10.1038/nmicrobiol.2017.105

Liu C, Tian J, Chen L, He Q, Liu X, et al. 2024. Biochar boosted high oleic peanut production with enhanced root development and biological N fixation by diazotrophs in a sand-loamy Primisol. Science of The Total Environment 932:173061

doi: 10.1016/j.scitotenv.2024.173061

Liu S, Zhang Y, Zong Y, Hu Z, Wu S, et al. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Global Change Biology Bioenergy 8:392−406

doi: 10.1111/gcbb.12265

Lorenz K, Lal R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science 177:651−70

doi: 10.1002/jpln.201400058

Luo Y, Schuur EAG. 2020. Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Global Change Biology 26:1109−17

doi: 10.1111/gcb.14939

Maillard É, Angers DA. 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology 20:666−79

doi: 10.1111/gcb.12438

Manna S, Singh N, Singh SB. 2018. In-vitro evaluation of rice and wheat straw biochars' effect on pyrazosulfuron-ethyl degradation and microbial activity in rice-planted soil. Soil Research 56:579

doi: 10.1071/sr18014

Margida MG, Lashermes G, Moorhead DL. 2020. Estimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litter. Soil Biology and Biochemistry 141:107689

doi: 10.1016/j.soilbio.2019.107689

Mašek O, Brownsort P, Cross A, Sohi S. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151−55

doi: 10.1016/j.fuel.2011.08.044

Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, et al. 2019. Global warming of 1.5 °C. Report. IPCC. pp. 93−174. www.ipcc.ch/sr15

Muhammad N, Dai Z, Xiao K, Meng J, Brookes PC, et al. 2014. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226:270−78

doi: 10.1016/j.geoderma.2014.01.023

Nan Q, Fang C, Cheng L, Hao W, Wu W. 2022. Elevation of NO3-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years. Environmental Pollution 295:118707

doi: 10.1016/j.envpol.2021.118707

Ren C, Zhao F, Shi Z, Chen J, Han X, et al. 2017. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology and Biochemistry 115:1−10

doi: 10.1016/j.soilbio.2017.08.002

Sarfraz R, Hussain A, Sabir A, Ben Fekih I, Ditta A, et al. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration — a review. Environmental monitoring and assessment 191:251

doi: 10.1007/s10661-019-7400-9

Schmidt HP, Kammann C, Hagemann N, Leifeld J, Bucheli TD, et al. 2021. Biochar in agriculture – a systematic review of 26 global meta-analyses. Global Change Biology Bioenergy 13:1708−30

doi: 10.1111/gcbb.12889

Schmidt MWI, Noack AG. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global biogeochemical cycles 14:777−93

doi: 10.1029/1999GB001208

Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology 22:1315−24

doi: 10.1111/gcb.13178

Sun J, Li H, Zhang D, Liu R, Zhang A, et al. 2021. Long-term biochar application governs the molecular compositions and decomposition of organic matter in paddy soil. Global Change Biology Bioenergy 13:1939−53

doi: 10.1111/gcbb.12896

Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, et al. 2016. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Science of the total environment 556:89−97

doi: 10.1016/j.scitotenv.2016.03.010

Tian K, Zhao Y, Xu X, Hai N, Huang B, et al. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agriculture, Ecosystems & Environment 204:40−50

doi: 10.1016/j.agee.2015.02.008

Weber K, Quicker P. 2018. Properties of biochar. Fuel 217:240−61

doi: 10.1016/j.fuel.2017.12.054

Wood SA, Bradford MA, Gilbert JA, McGuire KL, Palm CA, et al. 2015. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. Journal of Applied Ecology 52:744−52

doi: 10.1111/1365-2664.12416

Woolf D, Lehmann J. 2012. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83−95

doi: 10.1007/s10533-012-9764-6

Wu J, Cheng X, Luo Y, Liu W, Liu G. 2022. Identifying carbon-degrading enzyme activities in association with soil organic carbon accumulation under land-use changes. Ecosystems, 25:1219−33

doi: 10.1007/s10021-021-00711-y

Wu P, Ata-Ul-Karim ST, Singh BP, Wang H, Wu T, et al. 2019. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1:23−43

doi: 10.1007/s42773-019-00002-9

Xia X, Zhao Z, Ding Y, Feng X, Chen S, et al. 2024. Crop residue biochar rather than manure and straw return provided short term synergism among grain production, carbon sequestration, and greenhouse gas emission reduction in a paddy under rice-wheat rotation. Food and Energy Security 13(5):e70009

doi: 10.1002/fes3.70009

Xiang Y, Deng Q, Duan H, Guo Y. 2017. Effects of biochar application on root traits: a meta-analysis. Global Change Biology Bioenergy 9:1563−72

doi: 10.1111/gcbb.12449

Xie T, Sadasivam BY, Reddy KR, Wang C, Spokas K. 2016. Review of the effects of biochar amendment on soil properties and carbon sequestration. Journal of Hazardous, Toxic, and Radioactive Waste 20:04015013

doi: 10.1061/(ASCE)HZ.2153-5515.0000293

Xiong L, Liu X, Vinci G, Sun B, Drosos M, et al. 2021. Aggregate fractions shaped molecular composition change of soil organic matter in a rice paddy under elevated CO2 and air warming. Soil Biology and Biochemistry 159:108289

doi: 10.1016/j.soilbio.2021.108289

Xu G, Long Z, Ren P, Ren C, Cao Y, et al. 2020. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Science of the total environment 716:136414

doi: 10.1016/j.scitotenv.2019.136414

Zhang H, Voroney RP, Price GW. 2015. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biology and Biochemistry 83:19−28

doi: 10.1016/j.soilbio.2015.01.006

Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. 2018. Responses of soil microbial community structure changes and activities to biochar addition: a meta-analysis. Science of The Total Environment 643:926−35

doi: 10.1016/j.scitotenv.2018.06.231