|
Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, et al. 2018a. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology 24:4816−26 doi: 10.1111/gcb.14394 |
|
Chen J, Luo Y, Li J, Zhou X, Cao J, et al. 2017. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology 23:1328−37 doi: 10.1111/gcb.13402 |
|
Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, et al. 2018b. A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances 4:eaaq1689 doi: 10.1126/sciadv.aaq1689 |
|
Chen J, Sinsabaugh RL. 2021. Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology 27:1322−25 doi: 10.1111/gcb.15506 |
|
Chen J, van Groenigen KJ, Hungate BA, Terrer C, van Groenigen JW, et al. 2020. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology 26:5077−86 doi: 10.1111/gcb.15218 |
|
Chen W, Meng J, Han X, Lan Y, Zhang W. 2019. Past, present, and future of biochar. Biochar 1:75−87 doi: 10.1007/s42773-019-00008-3 |
|
Du Z, Wang Y, Huang J, Lu N, Liu X, et al. 2014. Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science 179:75−83 doi: 10.1097/SS.0000000000000050 |
|
Feng J, Yu D, Sinsabaugh RL, Moorhead DL, Andersen MN, et al. 2023. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biological Reviews 98:1184−99 doi: 10.1111/brv.12949 |
|
German DP, Marcelo KRB, Stone MM, Allison SD. 2012. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Global Change Biology 18:1468−79 doi: 10.1111/j.1365-2486.2011.02615.x |
|
Gunina A, Kuzyakov Y. 2022. From energy to (soil organic) matter. Global Change Biology 28:2169−82 doi: 10.1111/gcb.16071 |
|
Han M, Zhao Q, Li W, Ciais P, Wang YP, et al. 2022. Global soil organic carbon changes and economic revenues with biochar application. Global Change Biology Bioenergy 14:364−77 doi: 10.1111/gcbb.12915 |
|
Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J. 2014. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73:35−46 doi: 10.1016/j.orggeochem.2014.05.001 |
|
Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, et al. 2021. Biochar in climate change mitigation. Nature Geoscience 14:883−92 doi: 10.1038/s41561-021-00852-8 |
|
Lehmann J, Kuzyakov Y, Pan G, Ok YS. 2015. Biochars and the plant-soil interface. Plant and Soil 395:1−5 doi: 10.1007/s11104-015-2658-3 |
|
Lehmann J, Joseph S. 2015. Biochar for environmental management: an introduction. In Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. London: Routledge. pp. 1−13. doi: 10.4324/9780203762264 |
|
Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over storage. Nature Microbiology 2:17105 doi: 10.1038/nmicrobiol.2017.105 |
|
Liu C, Tian J, Chen L, He Q, Liu X, et al. 2024. Biochar boosted high oleic peanut production with enhanced root development and biological N fixation by diazotrophs in a sand-loamy Primisol. Science of The Total Environment 932:173061 doi: 10.1016/j.scitotenv.2024.173061 |
|
Liu S, Zhang Y, Zong Y, Hu Z, Wu S, et al. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Global Change Biology Bioenergy 8:392−406 doi: 10.1111/gcbb.12265 |
|
Lorenz K, Lal R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science 177:651−70 doi: 10.1002/jpln.201400058 |
|
Luo Y, Schuur EAG. 2020. Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Global Change Biology 26:1109−17 doi: 10.1111/gcb.14939 |
|
Maillard É, Angers DA. 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology 20:666−79 doi: 10.1111/gcb.12438 |
|
Manna S, Singh N, Singh SB. 2018. In-vitro evaluation of rice and wheat straw biochars' effect on pyrazosulfuron-ethyl degradation and microbial activity in rice-planted soil. Soil Research 56:579 doi: 10.1071/sr18014 |
|
Margida MG, Lashermes G, Moorhead DL. 2020. Estimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litter. Soil Biology and Biochemistry 141:107689 doi: 10.1016/j.soilbio.2019.107689 |
|
Mašek O, Brownsort P, Cross A, Sohi S. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151−55 doi: 10.1016/j.fuel.2011.08.044 |
|
Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, et al. 2019. Global warming of 1.5 °C. Report. IPCC. pp. 93−174. www.ipcc.ch/sr15 |
|
Muhammad N, Dai Z, Xiao K, Meng J, Brookes PC, et al. 2014. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226:270−78 doi: 10.1016/j.geoderma.2014.01.023 |
|
Nan Q, Fang C, Cheng L, Hao W, Wu W. 2022. Elevation of NO3−-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years. Environmental Pollution 295:118707 doi: 10.1016/j.envpol.2021.118707 |
|
Ren C, Zhao F, Shi Z, Chen J, Han X, et al. 2017. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology and Biochemistry 115:1−10 doi: 10.1016/j.soilbio.2017.08.002 |
|
Sarfraz R, Hussain A, Sabir A, Ben Fekih I, Ditta A, et al. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration — a review. Environmental monitoring and assessment 191:251 doi: 10.1007/s10661-019-7400-9 |
|
Schmidt HP, Kammann C, Hagemann N, Leifeld J, Bucheli TD, et al. 2021. Biochar in agriculture – a systematic review of 26 global meta-analyses. Global Change Biology Bioenergy 13:1708−30 doi: 10.1111/gcbb.12889 |
|
Schmidt MWI, Noack AG. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global biogeochemical cycles 14:777−93 doi: 10.1029/1999GB001208 |
|
Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology 22:1315−24 doi: 10.1111/gcb.13178 |
|
Sun J, Li H, Zhang D, Liu R, Zhang A, et al. 2021. Long-term biochar application governs the molecular compositions and decomposition of organic matter in paddy soil. Global Change Biology Bioenergy 13:1939−53 doi: 10.1111/gcbb.12896 |
|
Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, et al. 2016. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Science of the total environment 556:89−97 doi: 10.1016/j.scitotenv.2016.03.010 |
|
Tian K, Zhao Y, Xu X, Hai N, Huang B, et al. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agriculture, Ecosystems & Environment 204:40−50 doi: 10.1016/j.agee.2015.02.008 |
|
Weber K, Quicker P. 2018. Properties of biochar. Fuel 217:240−61 doi: 10.1016/j.fuel.2017.12.054 |
|
Wood SA, Bradford MA, Gilbert JA, McGuire KL, Palm CA, et al. 2015. Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. Journal of Applied Ecology 52:744−52 doi: 10.1111/1365-2664.12416 |
|
Woolf D, Lehmann J. 2012. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83−95 doi: 10.1007/s10533-012-9764-6 |
|
Wu J, Cheng X, Luo Y, Liu W, Liu G. 2022. Identifying carbon-degrading enzyme activities in association with soil organic carbon accumulation under land-use changes. Ecosystems, 25:1219−33 doi: 10.1007/s10021-021-00711-y |
|
Wu P, Ata-Ul-Karim ST, Singh BP, Wang H, Wu T, et al. 2019. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1:23−43 doi: 10.1007/s42773-019-00002-9 |
|
Xia X, Zhao Z, Ding Y, Feng X, Chen S, et al. 2024. Crop residue biochar rather than manure and straw return provided short term synergism among grain production, carbon sequestration, and greenhouse gas emission reduction in a paddy under rice-wheat rotation. Food and Energy Security 13(5):e70009 doi: 10.1002/fes3.70009 |
|
Xiang Y, Deng Q, Duan H, Guo Y. 2017. Effects of biochar application on root traits: a meta-analysis. Global Change Biology Bioenergy 9:1563−72 doi: 10.1111/gcbb.12449 |
|
Xie T, Sadasivam BY, Reddy KR, Wang C, Spokas K. 2016. Review of the effects of biochar amendment on soil properties and carbon sequestration. Journal of Hazardous, Toxic, and Radioactive Waste 20:04015013 doi: 10.1061/(ASCE)HZ.2153-5515.0000293 |
|
Xiong L, Liu X, Vinci G, Sun B, Drosos M, et al. 2021. Aggregate fractions shaped molecular composition change of soil organic matter in a rice paddy under elevated CO2 and air warming. Soil Biology and Biochemistry 159:108289 doi: 10.1016/j.soilbio.2021.108289 |
|
Xu G, Long Z, Ren P, Ren C, Cao Y, et al. 2020. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Science of the total environment 716:136414 doi: 10.1016/j.scitotenv.2019.136414 |
|
Zhang H, Voroney RP, Price GW. 2015. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biology and Biochemistry 83:19−28 doi: 10.1016/j.soilbio.2015.01.006 |
|
Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. 2018. Responses of soil microbial community structure changes and activities to biochar addition: a meta-analysis. Science of The Total Environment 643:926−35 doi: 10.1016/j.scitotenv.2018.06.231 |