[1]

Korotkova N, Borsch T, Arias S. 2017. A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 327(1):1−46

doi: 10.11646/phytotaxa.327.1.1
[2]

IBGE –Instituto Brasileiro de Geografia e Estatística. 2017. Censo Agro 2017. https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html?localidade=0&tema=76371

[3]

Agência Estadual de Notícias. 2022. Pitaia é cultivada em 29 municípios, gera lucros e é destaque do Boletim Agropecuário. www.aen.pr.gov.br/Noticia/Pitaia-e-cultivada-em-29-municipios-gera-lucros-e-e-destaque-do-Boletim-Agropecuario

[4]

Fróes PSM Júnior, Cardoso NRP, Rebello FK, Homma AKO, Lopes MLB. 2019. Aspectos da produção, comercialização e desenvolvimento da cultura da Pitaya no Estado do Pará. Enciclopédia Biosfera 16(29):264−79

doi: 10.18677/EnciBio_2019A19
[5]

Martineli M, Castricini A, Maia VM, Maranhão CMA. 2021. Post-harvest physiology of pitaya at different ripening stages. Semina: Ciências Agrárias 42:1033−48

doi: 10.5433/1679-0359.2021v42n3p1033
[6]

Xiong R, Liu C, Xu M, Wei SS, Huang JQ, et al. 2020. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season. BMC Genomics 21:329

doi: 10.1186/s12864-020-6726-6
[7]

Wang M, Li J, Li T, Kang S, Jiang S, et al. 2024. Light supplementation in pitaya orchards induces pitaya flowering in winter by promoting phytohormone biosynthesis. International Journal of Molecular Sciences 25(9):4794

doi: 10.3390/ijms25094794
[8]

Nerd A, Mizrahi Y. 1996. Reproductive biology of cactus fruit crops. Horticultural Review 18:321−46

doi: 10.1002/9780470650608.ch7
[9]

Jiang YL, Liao YY, Lin TS, Lee CL, Yen CR, et al. 2012. The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience 47(8):1063−67

doi: 10.21273/HORTSCI.47.8.1063
[10]

Pan R, Xu L, Wei Q, Wu C, Tang W, et al. 2017. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS One 12(12):e0189791

doi: 10.1371/journal.pone.0189791
[11]

Pan YW, Cheng JH, Sun DW. 2021. Inhibition of fruit softening by cold plasma treatments: affecting factors and applications. Critical Reviews in Food Science and Nutrition 61(12):1935−46

doi: 10.1080/10408398.2020.1776210
[12]

Morais SGG, da Silva Campelo Borges G, dos Santos Lima M, Martín-Belloso O, Magnani M. 2019. Effects of probiotics on the content and bioaccessibility of phenolic compounds in red pitaya pulp. Food Research International 126:108681

doi: 10.1016/j.foodres.2019.108681
[13]

Cardoso JF. 2024. Propagação, caracterização da fenologia, produção e qualidade dos frutos de pitaya em Florianópolis-SC. Thesis. Universidade Federal de Santa Catarina, Brasil. pp. 16−25

[14]

Trindade AR, Paiva P, Lacerda V, Marques N, Neto L, et al. 2023. Pitaya as a new alternative crop for Iberian Peninsula: biology and edaphoclimatic requirements. Plants 12(18):3212

doi: 10.3390/plants12183212
[15]

Zitha EZM, Magalhães DS, do Lago RC, Carvalho EEN, Pasqual M, et al. 2022. Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticulturae 291:110611

doi: 10.1016/j.scienta.2021.110611
[16]

Huang W, Yang G, Liu D, Li Q, Zheng L, et al. 2022. Metabolomics and transcriptomics analysis of vitro growth in pitaya plantlets with different LED Light spectra treatment. Industrial Crops and Products 186:115237

doi: 10.1016/j.indcrop.2022.115237
[17]

Magalhães DS, da Silva DM, Ramos JD, Salles Pio LA, Pasqual M, et al. 2019. Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Scientia Horticulturae 253:180−86

doi: 10.1016/j.scienta.2019.04.050
[18]

dos Santos HR, dos Santos PVD, Amaral TM. 2024. Seleção de variedade de pitaya Para implantação no Vale do São Francisco com auxílio da análise de decisão multicritério. Revista Em Agronegócio e Meio Ambiente 17(1):e11715

doi: 10.17765/2176-9168.2024v17n1e11715
[19]

Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. 2017. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology 68(1):61−84

doi: 10.1146/annurev-arplant-042916-040906
[20]

Rodrigues LJ, da Graça Tomás M, de Paula NRF, Pinto DM, de Barros Vilas Boas EV, et al. 2022. Physicochemical and chemical modifications of baby pitaya during its development. Scientia Horticulturae 306:111460

doi: 10.1016/j.scienta.2022.111460
[21]

Hua Q, Chen C, Zur Tel Zur N, Wang H, Wu J, et al. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiology and Biochemistry 126:117−25

doi: 10.1016/j.plaphy.2018.02.027
[22]

Li X, Li M, Wang J, Wang L, Han C, et al. 2018. Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biology and Technology 137:106−12

doi: 10.1016/j.postharvbio.2017.11.016
[23]

Liu R, Gao H, Chen H, Fang X, Wu W. 2019. Synergistic effect of 1-methylcyclopropene and carvacrol on preservation of red pitaya (Hylocereus polyrhizus). Food Chemistry 283:588−95

doi: 10.1016/j.foodchem.2019.01.066
[24]

Zhao J, Shen F, Gao Y, Wang D, Wang K. 2019. Parallel bud mutation sequencing reveals that fruit sugar and acid metabolism potentially influence stress in Malus. International Journal of Molecular Sciences 20(23):5988

doi: 10.3390/ijms20235988
[25]

Umer MJ, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, et al. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research 7:193

doi: 10.1038/s41438-020-00416-8
[26]

Zhang H, Wang R, Wang T, Fang C, Wang J. 2019. Methyl salicylate delays peel yellowing of 'Zaosu'pear (Pyrus bretschneideri) during storage by regulating chlorophyll metabolism and maintaining chloroplast ultrastructure. Journal of the Science of Food and Agriculture 99(10):4816−24

doi: 10.1002/jsfa.9737
[27]

Chylińska M, Szymańska-Chargot M, Deryło K, Tchórzewska D, Zdunek A. 2017. Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit. Plant Physiology and Biochemistry 119:328−37

doi: 10.1016/j.plaphy.2017.09.010
[28]

Junqueira KP, Faleiro FG, Bellon G, Junqueira NTV, da Fonseca KG, et al. 2010. Variabilidade genética de acessos de pitaya com diferentes níveis de produção por meio de marcadores RAPD. Revista Brasileira de Fruticultura 32:840−46

doi: 10.1590/S0100-29452010005000107
[29]

de Lima CA, Faleiro FG, Junqueira NTV, Bellon G. 2014. Avaliação de características físico-químicas de frutos de duas espécies de pitaya. Revista Ceres 61:377−83

doi: 10.1590/S0034-737X2014000300012
[30]

Arivalagan M, Karunakaran G, Roy TK, Dinsha M, Sindhu BC, et al. 2021. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry 353:129426

doi: 10.1016/j.foodchem.2021.129426
[31]

Sadowska-Bartosz I, Bartosz G. 2021. Biological properties and applications of betalains. Molecules 26(9):2520

doi: 10.3390/molecules26092520
[32]

Wichienchot S, Ishak WRBW. 2017. Prebiotics and dietary fibers from food processing by-products. Food Processing By-Products and their Utilization, ed. Anal AK. US: John Wiley & Sons Ltd. pp. 137−74. doi: 10.1002/9781118432921.ch7

[33]

Pansai N, Detarun P, Chinnaworn A, Sangsupawanich P, Wichienchot S. 2023. Effects of dragon fruit oligosaccharides on immunity, gut microbiome, and their metabolites in healthy adults–a randomized double-blind placebo controlled study. Food Research International 167:112657

doi: 10.1016/j.foodres.2023.112657
[34]

Giannoni JA, Imamura KB, de Rossi PHS, da Silva, VB, Yanai SS, et al. 2022. Physical, chemical, biochemical and microbiological characterization of minimally processed red pitaya (Hylocereus costaricensis) stored under refrigeration. Brazilian Journal of Animal and Environmental Research 5(1):438−49

doi: 10.34188/bjaerv5n1-033
[35]

da Costa CAR, do Nascimento SV, da Silva Valadares RB, da Silva LGM, Machado GGL, et al. 2025. Proteome and metabolome of Annona crassiflora Mart. fruit and their interaction during development. Scientia Horticulturae 339:113809

doi: 10.1016/j.scienta.2024.113809
[36]

de Miranda Monteiro G, Carvalho EEN, do Lago RC, da Silva LGM, de Souza LR, et al. 2025. Compositional analysis of Baru (Dipteryx alata Vogel) pulp highlighting its industrial potential. Food Research International 201:115548

doi: 10.1016/j.foodres.2024.115548
[37]

dos Santos DN, Pio LAS, Faleiro FG. 2022. Pitaya: uma alternativa frutífera. Brasília, DF: Prolmpress. 168 pp

[38]

Tran DH, Yen CR. 2014. Morphological characteristics and pollination requirement in red pitaya (Hylocereus spp.). International Scholarly and Scientific Research & Innovation 8(3):202−06

[39]

Hoa NV, Hoang NH, John MC, Chau NM. 2008. Developing GAP systems for dragon fruit producers and exporters in Binh Thuan and Tien Giang provinces. Report. CARD Project Progress Report. 7 pp

[40]

Saradhuldhat P, Kaewsongsang K, Suvittawat K. 2009. Induced off-season flowering by supplemented fluorescent light in dragon fruit (Hylocereus undatus). Journal of ISSAAS [International Society for Southeast Asian Agricultural Sciences] 15:236−37

[41]

Master P. 2024. Ampliando horizontes na produção de pitaya: Iluminação LED na Entressafra. Master Plants. (Acessed on 2 de abril 2024). Disponível em: https://masterplants.com.br/ampliando-horizonte-na-producao-de-pitaya-iluminacao-led-na-entressafra/

[42]

Chu, YC, Chang, JC. 2020. Regulation of floral bud development and emergence by ambient temperature under a long-day photoperiod in white-fleshed pitaya (Hylocereus undatus). Scientia Horticulturae 271:109479

doi: 10.1016/j.scienta.2020.109479
[43]

Wallace C, Both AJ. 2016. Evaluating operating characteristics of light sources for horticultural applications. Acta Horticulturae 1134:435−44

doi: 10.17660/ActaHortic.2016.1134.55
[44]

Bourget CM. 2008. An introduction to light-emitting diodes. HortScience 43(7):1944−46

doi: 10.21273/HORTSCI.43.7.1944
[45]

Bantis F, Smirnakou S, Ouzounis T, Koukounaras A, Ntagkas N, et al. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae 235:437−51

doi: 10.1016/j.scienta.2018.02.058
[46]

Muneer S, Kim EJ, Park JS, Lee JH. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences 15(3):4657−70

doi: 10.3390/ijms15034657
[47]

Guo X, Hao X, Zheng JM, Little C, Khosla S. 2016. Effects of plasma vs. high pressure sodium lamps on plant growth, fruit yield and quality in greenhouse cucumber production. Acta Horticulturae 1134:79−85

doi: 10.17660/ActaHortic.2016.1134.11
[48]

Chen X, Tian R, Shen L, Yin Y, Zhu L, et al. 2019. Effect of the blue-red light ratio in supplemental light-emitting diode on pitaya flower bud differentiation and fruit quality. Journal of the Zhejiang University (Agriculture and Life Sciences) 45:14−22

doi: 10.3785/j.issn.1008-9209.2018.02.261
[49]

Jiang C, Johkan M, Hohjo M, Tsukagoshi S, Ebihara M, et al. 2017. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Scientia Horticulturae 222:221−29

doi: 10.1016/j.scienta.2017.04.026
[50]

Nguyen QT, Ngo MD, Truong TH, Nguyen DC, Nguyen MC. 2021. Modified compact fluorescent lamps improve light-induced off-season floral stimulation in dragon fruit farming. Food Science & Nutrition 9(5):2390−401

doi: 10.1002/fsn3.2088