| [1] |
Christensen K, Doblhammer G, Rau R, Vaupel JW. 2009. Ageing populations: the challenges ahead. The Lancet 374:1196−208 doi: 10.1016/S0140-6736(09)61460-4 |
| [2] |
MacNee W, Rabinovich RA, Choudhury G. 2014. Ageing and the border between health and disease. European Respiratory Journal 44:1332−52 doi: 10.1183/09031936.00134014 |
| [3] |
Bountziouka V, Nelson CP, Codd V, Wang Q, Musicha C, et al. 2022. Association of shorter leucocyte telomere length with risk of frailty. Journal of Cachexia, Sarcopenia and Muscle 13:1741−51 doi: 10.1002/jcsm.12971 |
| [4] |
Horvath S, Raj K. 2018. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 19:371−84 doi: 10.1038/s41576-018-0004-3 |
| [5] |
Phillip JM, Wu PH, Gilkes DM, Williams W, McGovern S, et al. 2017. Biophysical and biomolecular determination of cellular age in humans. Nature Biomedical Engineering 1:93 doi: 10.1038/s41551-017-0093 |
| [6] |
Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S. 2013. The eye and the heart. European Heart Journal 34:1270−78 doi: 10.1093/eurheartj/eht023 |
| [7] |
Grimbly MJ, Koopowitz SM, Chen R, Sun Z, Foster PJ, et al. 2024. Estimating biological age from retinal imaging: a scoping review. BMJ Open Ophthalmology 9:e001794 doi: 10.1136/bmjophth-2024-001794 |
| [8] |
Zhu Z, Shi D, Peng G, Tan Z, Shang X, et al. 2023. Retinal age gap as a predictive biomarker for mortality risk. British Journal of Ophthalmology 107:547−54 doi: 10.1136/bjophthalmol-2021-319807 |
| [9] |
Abreu-Gonzalez R, Rodríguez-Martín JN, Quezada-Peralta G, Rodrigo-Bello JJ, Gil-Hernández MA, et al. 2023. Retinal age as a predictive biomarker of the diabetic retinopathy grade. Archivos de la Sociedad Española de Oftalmología 98:265−69 doi: 10.1016/j.oftal.2023.02.004 |
| [10] |
Ahadi S, Wilson KA, Babenko B, McLean CY, Bryant D, et al. 2023. Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock. eLife 12:e82364 doi: 10.7554/elife.82364 |
| [11] |
Nusinovici S, Rim TH, Yu M, Lee G, Tham YC, et al. 2022. Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk. Age and Ageing 51:afac065 doi: 10.1093/ageing/afac065 |
| [12] |
Wang J, Gao Y, Wang F, Zeng S, Li J, et al. 2024. Accurate estimation of biological age and its application in disease prediction using a multimodal image Transformer system. Proceedings of the National Academy of Sciences of the United States of America 121:e2308812120 doi: 10.1073/pnas.2308812120 |
| [13] |
Shigueoka LS, Mariottoni EB, Thompson AC, Jammal AA, Costa VP, et al. 2021. Predicting age from optical coherence tomography scans with deep learning. Translational Vision Science & Technology 10:12 doi: 10.1167/tvst.10.1.12 |
| [14] |
Chueh KM, Hsieh YT, Chen HH, Ma IH, Huang SL. 2022. Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning. American Journal of Ophthalmology 235:221−28 doi: 10.1016/j.ajo.2021.09.015 |
| [15] |
Chen R, Zhang S, Peng G, Meng W, Borchert G, et al. 2024. Deep neural network-estimated age using optical coherence tomography predicts mortality. 10.1007/s11357-023-00920-4 46:1703−11 |
| [16] |
Li R, Chen W, Li M, Wang R, Zhao L, et al. 2023. LensAge index as a deep learning-based biological age for self-monitoring the risks of age-related diseases and mortality. Nature Communications 14:7126 doi: 10.1038/s41467-023-42934-8 |
| [17] |
Sayer AA, Osmond C, Briggs R, Cooper C. 1999. Do all systems age together? Gerontology 45:83−6 doi: 10.1159/000022068 |
| [18] |
Popovic N, Ždralević M, Vujosevic S, Radunović M, Adžić Zečević A, et al. 2023. Retinal microvascular complexity as a putative biomarker of biological age: a pilot study. Biogerontology 24:971−85 doi: 10.1007/s10522-023-10057-8 |
| [19] |
Rao HL, Venkatesh CR, Vidyasagar K, Yadav RK, Addepalli UK, et al. 2014. Retinal nerve fiber layer measurements by scanning laser polarimetry with enhanced corneal compensation in healthy subjects. Journal of Glaucoma 23:589−93 doi: 10.1097/IJG.0b013e318286ffa5 |
| [20] |
Patel NB, Lim M, Gajjar A, Evans KB, Harwerth RS. 2014. Age-associated changes in the retinal nerve fiber layer and optic nerve head. Investigative Ophthalmology & Visual Science 55:5134−43 doi: 10.1167/iovs.14-14303 |
| [21] |
Leung H, Wang JJ, Rochtchina E, Tan AG, Wong TY, et al. 2003. Relationships between age, blood pressure, and retinal vessel diameters in an older population. nvestigative Ophthalmology & Visual Science 44:2900−4 doi: 10.1167/iovs.02-1114 |
| [22] |
Alamouti B, Funk J. 2003. Retinal thickness decreases with age: an OCT study. British Journal of Ophthalmology 87:899−901 doi: 10.1136/bjo.87.7.899 |
| [23] |
Shokr H, Lush V, Dias IH, Ekárt A, De Moraes G, et al. 2022. The Use of Retinal Microvascular Function and Telomere Length in Age and Blood Pressure Prediction in Individuals with Low Cardiovascular Risk. Cells 11:3037 doi: 10.3390/cells11193037 |
| [24] |
Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, et al. 2013. Age- and hypertension-dependent changes in retinal vessel diameter and wall thickness: an optical coherence tomography study. American Journal of Ophthalmology 156:706−14 doi: 10.1016/j.ajo.2013.05.021 |
| [25] |
Wong TY, Klein R, Klein BEK, Meuer SM, Hubbard LD. 2003. Retinal vessel diameters and their associations with age and blood pressure. Investigative Ophthalmology & Visual Science 44:4644−50 doi: 10.1167/iovs.03-0079 |
| [26] |
Wei Y, Jiang H, Shi Y, Qu D, Gregori G, et al. 2017. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Investigative Ophthalmology & Visual Science 58:3804−17 doi: 10.1167/iovs.17-21460 |
| [27] |
Martens DS, Wei FF, Cox B, Plusquin M, Thijs L, et al. 2018. Retinal microcirculation and leukocyte telomere length in the general population. Scientific reports 8:7095 doi: 10.1038/s41598-018-25165-6 |
| [28] |
Pathai S, Gilbert CE, Lawn SD, Weiss HA, Peto T, et al. 2013. Assessment of candidate ocular biomarkers of ageing in a South African adult population: relationship with chronological age and systemic biomarkers. Mechanisms of Ageing and Development 134:338−45 doi: 10.1016/j.mad.2013.05.002 |
| [29] |
Wilson GA, Cheyne K, Ramrakha S, Ambler A, Tan GS, et al. 2023. Are macular drusen in midlife a marker of accelerated biological ageing? Clinical and Experimental Optometry 106:41−46 doi: 10.1080/08164622.2021.2012428 |
| [30] |
Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, et al. 2023. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nature Medicine 29:1221−31 doi: 10.1038/s41591-023-02296-6 |
| [31] |
Hu W, Wang W, Wang Y, Chen Y, Shang X, et al. 2022. Retinal age gap as a predictive biomarker of future risk of Parkinson's disease. Age and Ageing 51:afac062 doi: 10.1093/ageing/afac062 |
| [32] |
Zhu Z, Chen Y, Wang W, Wang Y, Hu W, et al. 2022. Association of retinal age gap with arterial stiffness and incident cardiovascular disease. Stroke 53:3320−28 doi: 10.1161/STROKEAHA.122.038809 |
| [33] |
Zhu Z, Hu W, Chen R, Xiong R, Wang W, et al. 2022. Retinal age gap as a predictive biomarker of stroke risk. BMC Medicine 20:466 doi: 10.1186/s12916-022-02620-w |
| [34] |
Zhang S, Chen R, Wang Y, Hu W, Kiburg KV, et al. 2023. Association of retinal age gap and risk of kidney failure: a UK Biobank study. American Journal of Kidney Diseases 81:537−544.e1 doi: 10.1053/j.ajkd.2022.09.018 |
| [35] |
Zhu Z, Liu D, Chen R, Hu W, Liao H, et al. 2023. The Association of Retinal age gap with metabolic syndrome and inflammation. Journal of Diabetes 15:237−45 doi: 10.1111/1753-0407.13364 |
| [36] |
Chen R, Chen Y, Zhang J, Wang W, Hu W, et al. 2024. Retinal age gap as a predictive biomarker for future risk of clinically significant diabetic retinopathy. Acta Diabetologica 61:373−80 doi: 10.1007/s00592-023-02199-5 |
| [37] |
Chen R, Zhang J, Shang X, Wang W, He M, et al. 2023. Central obesity and its association with retinal age gap: insights from the UK Biobank study. International Journal of Obesity 47:979−85 doi: 10.1038/s41366-023-01345-x |
| [38] |
Chen R, Xu J, Zhang X, Zhang J, Shang X, et al. 2023. Glycemic status and its association with retinal age gap: Insights from the UK Biobank study. Diabetes Research and Clinical Practic 202:110817 doi: 10.1016/j.diabres.2023.110817 |
| [39] |
Chen R, Xu J, Shang X, Bulloch G, He M, et al. 2023. Association between cardiovascular health metrics and retinal ageing. Geroscience 45:1511−21 doi: 10.1007/s11357-023-00743-3 |
| [40] |
Hu W, Lin Z, Clark M, Henwood J, Shang X, et al. 2025. Real-world feasibility, accuracy and acceptability of automated retinal photography and AI-based cardiovascular disease risk assessment in Australian primary care settings: a pragmatic trial. NPJ Digital Medicine 8:122 doi: 10.1038/s41746-025-01436-1 |
| [41] |
Zhu Z, Wang Y, Qi Z, Hu W, Zhang X, et al. 2025. Oculomics: Current concepts and evidence. Progress in Retinal and Eye Research 106:101350 doi: 10.1016/j.preteyeres.2025.101350 |