[1]

Mallory AC, Vaucheret H. 2006. Functions of microRNAs and related small RNAs in plants. Nature Genetics 38:S31−S36

doi: 10.3389/10.1038/ng1791
[2]

Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843−54

doi: 10.3389/10.1016/0092-8674(93)90529-Y
[3]

Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA. 2006. Conservation and divergence of plant microRNA genes. The Plant Journal 46(2):243−59

doi: 10.1111/j.1365-313X.2006.02697.x
[4]

Sunkar R, Li YF, Jagadeeswaran G. 2012. Functions of microRNAs in plant stress responses. Trends in Plant Science 17:196−203

doi: 10.1016/j.tplants.2012.01.010
[5]

Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, et al. 2015. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in Plant Science 6:410

doi: 10.3389/fpls.2015.00410
[6]

Alptekin B, Langridge P, Budak H. 2017. Abiotic stress miRNomes in the triticeae. Functional & Integrative Genomics 17:145−70

doi: 10.1007/s10142-016-0525-9
[7]

Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. 2017. Functional roles of micrornas in agronomically important plants—potential as targets for crop improvement and protection. Frontiers in Plant Science 8:378

doi: 10.3389/fpls.2017.00378
[8]

Han J, Fang J, Wang C, Yin Y, Sun X, et al. 2014. Grapevine microRNAs responsive to exogenous gibberellin. BMC Genomics 15(1):111

doi: 10.1186/1471-2164-15-111
[9]

De Vries S, De Vries J, Rose LE. 2019. The Elaboration of miRNA regulation and gene regulatory networks in plant–microbe interactions. Genes 10(4):310

doi: 10.3390/genes10040310
[10]

Xu T, Zhang L, Yang Z, Wei Y, Dong T. 2021. Identification and functional characterization of plant MiRNA under salt stress shed light on salinity resistance improvement through MiRNA manipulation in crops. Frontiers in Plant Science 12:665439

doi: 10.3389/fpls.2021.665439
[11]

Shah SMS, Ullah F. 2023. A comprehensive overview of miRNA targeting drought stress resistance in plants. Brazilian Journal of Biology 83:e242708

doi: 10.1590/1519-6984.242708
[12]

Li Y. 2022. Identification of cucumber miR160 gene family and functional analysis of Csa-miR160d. Thesis. Henan University of Science and Technology, China

[13]

Zhang F. 2020. Molecular mechanisms of DNA methylation and microRNA regulation of chrysanthemum inflorescence development. Thesis. Beijing Forestry University, China

[14]

Du Q, Zhao M, Gao W, Sun S, Li W. 2017. microRNA/microRNA complementarity is important for the regulation pattern of NFYA5 by miR169 under dehydration shock in Arabidopsis. The Plant Journal 91(1):22−33

doi: 10.1111/tpj.13540
[15]

Li N, Wang J, Wang B, Dai Q, Huang S, et al. 2021. Advances in tomato (Solanum lycopersicum) microRNA regulation of growth and adversity response. Xinjiang Agricultural Sciences 58(03):474−82

[16]

Yang X, Zhang L, Yang Y, Schmid M, Wang Y. 2021. miRNA mediated regulation and interaction between plants and pathogens. International Journal of Molecular Sciences 22:2913

doi: 10.3390/ijms22062913
[17]

Li C, Wong AYP, Wang S, Jia Q, Chuang WP, et al. 2018. miRNA-mediated interactions in and between plants and insects. International Journal of Molecular Sciences 19(10):3239

doi: 10.3390/ijms19103239
[18]

Yu X, Hou Y, Chen W, Wang S, Wang P, et al. 2017. Malus hupehensis miR168 targets to ARGONAUTE1 and contributes to the resistance against Botryosphaeria dothidea infection by altering defense responses. Plant and Cell Physiology 58(9):1541−57

doi: 10.1093/pcp/pcx080
[19]

Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23:1512−22

doi: 10.1105/tpc.111.084525
[20]

Sreekumar J, Muhammed Sadiq PA, Saravanan R, Mukherjee A. 2022. In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz). Journal of Genetics 101:2

doi: 10.1007/s12041-021-01345-8
[21]

Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, et al. 2020. Integrated transcriptome, microrna, and phytochemical analyses reveal roles of phytohormone signal transduction and ABC transporters in flavor formation of oolong tea (Camellia inensis) during solar withering. Journal of Agricultural and Food Chemistry 68(45):12749−67

doi: 10.1021/acs.jafc.0c05750
[22]

Liu Y, Wang L, Chen D, Wu X, Huang D, et al. 2014. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695

doi: 10.1186/1471-2164-15-695
[23]

Lakhwani D, Sanchita, Pandey A, Sharma D, Asif MH, et al. 2020. Novel microRNAs regulating ripening-associated processes in banana fruit. Plant Growth Regulation 90:223−35

doi: 10.1007/s10725-020-00572-w
[24]

Aprea E, Corollaro ML, Betta E, Endrizzi I, Demattè ML, et al. 2012. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Research International 49(2):677−86

doi: 10.1016/j.foodres.2012.09.023
[25]

Yang S, Hao N, Meng Z, Li Y, Zhao Z. 2021. Identification, comparison and classification of volatile compounds in peels of 40 apple cultivars by HS-SPME with GC-MS. Foods 10:1051

doi: 10.3390/foods10051051
[26]

Yang S, Meng Z, Fan J, Yan L, Yang Y, et al. 2021. Evaluation of the volatile profiles in pulp of 85 apple cultivars (Malus domestica) by HS-SPME combined with GC-MS. Journal of Food Measurement and Characterization 15:4215−25

doi: 10.1007/s11694-021-01003-8
[27]

Yan D, Shi J, Ren X, Tao Y, Ma F, et al. 2020. Insights into the aroma profiles and characteristic aroma of 'Honeycrisp' apple (Malus × domestica). Food Chemistry 327:127074

doi: 10.1016/j.foodchem.2020.127074
[28]

Lu X, Gao Y, Wang K, Sun S, Li L, et al. 2020. Analysis of aroma characteristics in different cultivated apple strains. Scientia Agricultura Sinica 55:543−57

doi: 10.3864/j.issn.0578-1752.2022.03.010
[29]

El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. 2013. Advances in fruit aroma volatile research. Molecules 18(7):8200−29

doi: 10.3390/molecules18078200
[30]

Shi F, Zhou X, Yao M, Tan Z, Zhou Q, et al. 2019. miRNAs play important roles in aroma weakening during the shelf life of 'Nanguo' pear after cold storage. Food Research International 116:942−52

doi: 10.1016/j.foodres.2018.09.031
[31]

Li H, Lin Q, Yan M, Wang M, Wang P, et al. 2021. Relationship between secondary metabolism and miRNA for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis. Journal of Agricultural and Food Chemistry 69:2001−12

doi: 10.1021/acs.jafc.0c07440
[32]

Lu X, Liu Z, Gao Y, Wang K, Sun S, et al. 2024. Analysis of aroma characteristics of 'Binzi' and 'Xiangguo' apple—ancient cultivars in China. Foods 13:2869

doi: 10.3390/foods13182869
[33]

Li Q, Gao Y, Wang K, Sun S, Lu X, et al. 2023. Identification of microRNAs and target genes in apple (Malus domestica) scion and rootstock with grafted interstock. Fruit Research 3:34

doi: 10.48130/FruRes-2023-0034
[34]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[35]

Song X, Dai F, Yao J, Li Z, Huang Z, et al. 2023. Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS. LWT 184:115011

doi: 10.1016/j.lwt.2023.115011
[36]

Oliveira A, Amaro AL, Pintado M. 2018. Impact of food matrix components on nutritional and functional properties of fruit-based products. Current Opinion in Food Science 22:153−59

doi: 10.3389/10.1016/j.cofs.2018.04.002
[37]

Chatterjee A, Dhal S, Pal H. 2021. Insight into the regulatory network of miRNA to unravel the ripening physiology of climacteric and non-climacteric fruits. Plant Gene 28:100329

doi: 10.1016/j.plgene.2021.100329
[38]

Huang X, Xia R, Liu Y. 2022. microRNA-mediated regulation in fruit quality. Current Opinion in Food Science 46:100837

doi: 10.1016/j.cofs.2022.100837
[39]

Chen J. 1985. Apple chronicles of Hebei Province. Beijing, China: China Agriculture Press. pp.121−200

[40]

Chung MY, Nath UK, Vrebalov J, Gapper N, Lee JM, et al. 2020. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC Plant Biology 20:283

doi: 10.1186/s12870-020-02489-y
[41]

Wang W, Wang J, Wu Y, Li D, Allan AC, et al. 2020. Genomewide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening. New Phytologist 225:1618−34

doi: 10.1111/nph.16233
[42]

Espino-Díaz M, Sepúlveda DR, González-Aguilar G, Olivas GI. 2016. Biochemistry of apple aroma: a review. Food Technology and Biotechnology 54:375−94

doi: 10.17113/ftb.54.04.16.4248
[43]

Lu X, Gao Y, Wang K, Sun S, Liu Z, et al. 2022. Dwarf interstocks improve aroma quality of 'Huahong' apple (Malus × domestica). Agriculture 12:1710

doi: 10.3390/agriculture12101710
[44]

Sunkar R, Zhu JK. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16:2001−19

doi: 10.1105/tpc.104.022830
[45]

Pan J, Huang D, Guo Z, Kuang Z, Zhang H, et al. 2018. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. Journal of Integrative Plant Biology 60:323−40

doi: 10.1111/jipb.12634
[46]

Ma C, Burd S, Lers A. 2015. miR408 is involved in abiotic stress responses in Arabidopsis. The Plant Journal 84:169−87

doi: 10.1111/tpj.12999
[47]

Liang G, Ai Q, Yu D. 2015. Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Scientific Reports 5:11813

doi: 10.1038/srep11813
[48]

Liu A, Zhou Z, Yi Y, Chen G. 2020. Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain. BMC Genomics 21:127

doi: 10.1186/s12864-020-6474-7
[49]

Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK. 2015. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7:174−87

doi: 10.1039/C4MT00264D
[50]

Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226(2):362−72

doi: 10.1111/nph.16364
[51]

Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, et al. 2015. Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science 6:255

doi: 10.3389/fpls.2015.00255
[52]

Zhang X, Agrawal A, San KY. 2012. Improving fatty acid production in escherichia coli through the overexpression of malonyl coA-Acyl carrier protein transacylase. Biotechnology Progress 28(1):60−65

doi: 10.1002/btpr.716
[53]

Fellman JK, Miller TW, Mattinson DS, Mattheis JP. 2000. Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 35:1026−33

doi: 10.21273/hortsci.35.6.1026
[54]

Shi F, Zhou X, Zhou Q, Tan Z, Yao M, et al. 2018. Transcriptome analyses provide new possible mechanisms of aroma ester weakening of 'Nanguo' pear after cold storage. Scientia Horticulturae 237:247−56

doi: 10.1016/j.scienta.2018.04.013
[55]

Zhang C, Tian S. 2010. Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chemistry 120(3):864−72

doi: 10.1016/j.foodchem.2009.11.029
[56]

Graham IA, Eastmond PJ. 2002. Pathways of straight and branched chain fatty acid catabolism in higher plants. Progress in Lipid Research 41(2):156−81

doi: 10.1016/S0163-7827(01)00022-4
[57]

Arent S, Christensen CE, Pye VE, Nørgaard A, Henriksen A. 2010. The multifunctional protein in peroxisomal β-oxidation: structure and substrate specificity of the Arabidopsis thaliana protein MFP2. Journal of Biological Chemistry 285(31):24066−77

doi: 10.1074/jbc.M110.106005
[58]

Lin F, Wu H, Li Z, Huang Y, Lin X, et al. 2024. Effect of mechanical damage in green-making process on aroma of Rougui tea. Foods 13(9):1315

doi: 10.3390/foods13091315
[59]

Wu X, Chen Y, Wang X, Qi K, Qiao X, et al. 2023. New insights into aroma regulation in pear peel and flesh under methyl jasmonate treatment obtained by metabolite and whole-transcriptome RNA sequencing analyses. Postharvest Biology and Technology 201:112347

doi: 10.1016/j.postharvbio.2023.112347
[60]

Zhu C, Zhang S, Fu H, Zhou C, Chen L, et al. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding rnas modulating characteristic secondary metabolites of Oolong Tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science 10:492402

doi: 10.3389/fpls.2019.01638