[1]

Hou X, Li Y, Liu T. 2022. Advances in genetic breeding and molecular biology of non-heading Chinese cabbage. Journal of Nanjing Agricultural University 45(05):864−73

doi: 10.7685/jnau.202205025
[2]

Gebauer R, Vanbeveren SPP, Volařík D, Plichta R, Ceulemans R. 2016. Petiole and leaf traits of poplar in relation to parentage and biomass yield. Forest Ecology and Management 362:1−9

doi: 10.1016/j.foreco.2015.11.036
[3]

Weijschedé J, Antonise K, de Caluwe H, de Kroon H, Huber H. 2008. Effects of cell number and cell size on petiole length variation in a stoloniferous herb. American Journal of Botany 95:41−49

doi: 10.3732/ajb.95.1.41
[4]

Damayanthi, Ranwala NK, Decoteau DR, Ranwala AP, Miller WB. 2002. Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. Plant Growth Regulation 38:157−63

doi: 10.1023/A:1021272902811
[5]

Devlin PF, Robson PR, Patel SR, Goosey L, Sharrock RA, et al. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiology 119:909−15

doi: 10.1104/pp.119.3.909
[6]

Nishizawa T. 1990. Effects of daylength on cell length and cell number in strawberry petioles. Journal of the Japanese Society for Horticultural Science 59:533−38

doi: 10.2503/jjshs.59.533
[7]

Hamasaki H, Ayano M, Nakamura A, Fujioka S, Asami T, et al. 2020. Light activates brassinosteroid biosynthesis to promote hook opening and petiole development in Arabidopsis thaliana. Plant and Cell Physiology 61(7):1239−51

doi: 10.1093/pcp/pcaa053
[8]

Küpers JJ, Snoek BL, Oskam L, Pantazopoulou CK, Matton SEA, et al. 2023. Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics. Current Biology 33(1):75−85.e5

doi: 10.1016/j.cub.2022.11.045
[9]

Kilen TC. 1983. Inheritance of a short petiole trait in soybean. Crop Science 23:1208−10

doi: 10.2135/cropsci1983.0011183X002300060043x
[10]

Nagatani A, Chory J, Furuya M. 1991. Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant and Cell Physiology 32:1119−22

doi: 10.1093/oxfordjournals.pcp.a078177
[11]

Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell 5:147−57

doi: 10.1105/tpc.5.2.147
[12]

Tsukaya H, Kozuka T, Kim GT. 2002. Genetic control of petiole length in Arabidopsis thaliana. Plant and Cell Physiology 43:1221−28

doi: 10.1093/pcp/pcf147
[13]

Liu Z, She H, Xu Z, Zhang H, Li G, et al. 2021. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC Plant Biology 21:290

doi: 10.1186/s12870-021-03092-5
[14]

Huang J, Sun J, Liu E, Yuan S, Liu Y, et al. 2021. Mapping of QTLs detected in a broccoli double diploid population for planting density traits. Scientia Horticulturae 277:109835

doi: 10.1016/j.scienta.2020.109835
[15]

McCammon KR, Honma S. 1986. The inheritance of petiole characteristics in Pak-Choi. Scientia Horticulturae 28:29−35

doi: 10.1016/0304-4238(86)90121-4
[16]

Li F, Liu Z, Chen H, Wu J, Cai X, et al. 2023. QTL mapping of leaf-related traits using a high-density Bin map in Brassica rapa. Horticulturae 9:433

doi: 10.3390/horticulturae9040433
[17]

Zhao T, Bai A, Wang X, Zhang F, Yang M, et al. 2024. Genetic mapping for leaf shape and leaf size in non-heading Chinese cabbage by a RIL population. Horticulturae 10:529

doi: 10.3390/horticulturae10050529
[18]

Bai A, Zhao T, Li Y, Zhang F, Wang H, et al. 2024. QTL mapping and candidate gene analysis reveal two major loci regulating green leaf color in non-heading Chinese cabbage. Theoretical and Applied Genetics 137:105

doi: 10.1007/s00122-024-04608-x
[19]

Arends D, Prins P, Jansen RC, Broman KW. 2010. R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990−92

doi: 10.1093/bioinformatics/btq565
[20]

Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, et al. 2019. R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations. Genetics 211:495−502

doi: 10.1534/genetics.118.301595
[21]

Li Y, Liu GF, Ma LM, Liu TK, Zhang CW, et al. 2020. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Horticulture Research 7:212

doi: 10.1038/s41438-020-00449-z
[22]

Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, et al. 2007. Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development 134:1643−52

doi: 10.1242/dev.003533
[23]

Kato H, Motomura T, Komeda Y, Saito T, Kato A. 2010. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. Journal of Plant Physiology 167:571−77

doi: 10.1016/j.jplph.2009.11.004
[24]

He Z, Zhou X, Chen J, Yin L, Zeng Z, et al. 2021. Identification of a consensus DNA-binding site for the TCP domain transcription factor TCP2 and its important roles in the growth and development of Arabidopsis. Molecular Biology Reports 48:2223−33

doi: 10.1007/s11033-021-06233-z
[25]

Yu H, Zhang L, Wang W, Tian P, Wang W, et al. 2021. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. Journal of Exprimental Botany 72:1809−21

doi: 10.1093/jxb/eraa569
[26]

Baulies JL, Bresso EG, Goldy C, Palatnik JF, Schommer C. 2022. Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis. Plant Molecular Biology 108:93−103

doi: 10.1007/s11103-021-01227-8
[27]

Sato A, Yamamoto KT. 2008. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiologia Plantarum 133:397−405

doi: 10.1111/j.1399-3054.2008.01055.x
[28]

Wang Y, Shen W, Chan Z, Wu Y. 2015. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana. Frontiers in Plant Science 6:1004

doi: 10.3389/fpls.2015.01004
[29]

Lee YK, Kim IJ. 2018. Functional conservation of Arabidopsis LNG1 in tobacco relating to leaf shape change by increasing longitudinal cell elongation by overexpression. Genes & Genomics 40:1053−62

doi: 10.1007/s13258-018-0712-2
[30]

Wang Q, Aliaga Fandino AC, Graeff M, DeFalco TA, Zipfel C, et al. 2023. A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation. Nature Communications 14:423

doi: 10.1038/s41467-023-36200-0
[31]

Beltramino M, Debernardi JM, Ferela A, Palatnik JF. 2021. ARF2 represses expression of plant GRF transcription factors in a complementary mechanism to microRNA miR396. Plant Physiology 185:1798−812

doi: 10.1093/plphys/kiab014
[32]

Beltramino M, Ercoli MF, Debernardi JM, Goldy C, Rojas AML, et al. 2018. Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions. Scientific Reports 8:13447

doi: 10.1038/s41598-018-29859-9
[33]

Hu T, Manuela D, Xu M. 2023. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 and 13 repress BLADE-ON-PETIOLE 1 and 2 directly to promote adult leaf morphology in Arabidopsis. Journal of Exprimental Botany 74:1926−39

doi: 10.1093/jxb/erad017
[34]

Yang R, Liu P, Zhang T, Dong H, Jing Y, et al. 2023. Plant-specific BLISTER interacts with kinase BIN2 and BRASSINAZOLE RESISTANT1 during skotomorphogenesis. Plant Physiology 193:1580−96

doi: 10.1093/plphys/kiad353
[35]

Khan M, Xu H, Hepworth SR. 2014. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. Plant Science 215−216:157−71

doi: 10.1016/j.plantsci.2013.10.019
[36]

Wang Y, Salasini BC, Khan M, Devi B, Bush M, et al. 2019. Clade I TGACG-motif binding basic leucine zipper transcription factors mediate BLADE-ON-PETIOLE-dependent regulation of development. Plant Physiology 180:937−51

doi: 10.1104/pp.18.00805
[37]

Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, et al. 2013. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770−79

doi: 10.1242/dev.088898
[38]

Andrés F, Romera-Branchat M, Martínez-Gallegos R, Patel V, Schneeberger K, et al. 2015. Floral induction in Arabidopsis by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by the homeodomain protein PENNYWISE. Plant Physiology 169:2187−99

doi: 10.1104/pp.15.00960
[39]

Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, et al. 2006. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Functional & Integrative Genomics 6:47−59

doi: 10.1007/s10142-005-0005-0
[40]

Bishop GJ, Koncz C. 2002. Brassinosteroids and plant steroid hormone signaling. The Plant Cell 14:S97−S110

doi: 10.1105/tpc.001461
[41]

Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, et al. 2004. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. The Plant Cell 16:379−93

doi: 10.1105/tpc.018630
[42]

Zhou XY, Song L, Xue HW. 2013. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Molecular Plant 6:887−904

doi: 10.1093/mp/sss123
[43]

Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, et al. 2024. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. Plant Physiology 197:kiae550

doi: 10.1093/plphys/kiae550