| [1] |
Du J, Johnson LM, Jacobsen SE, Patel DJ. 2015. DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology 16:519−32 doi: 10.1038/nrm4043 |
| [2] |
Meyer KD, Jaffrey SR. 2014. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nature Reviews Molecular Cell Biology 15:313−26 doi: 10.1038/nrm378 |
| [3] |
Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, et al. 2022. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications. Plant Biotechnology Journal 20:1241−56 doi: 10.1111/pbi.13829 |
| [4] |
Chmielowska-Bąk J, Arasimowicz-Jelonek M, Deckert J. 2019. In search of the mRNA modification landscape in plants. BMC Plant Biol 19:421 doi: 10.1186/s12870-019-2033-2 |
| [5] |
Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, et al. 2014. Unique features of the m6A methylome in Arabidopsis thaliana. Nature Communications 5:5630 doi: 10.1038/ncomms6630 |
| [6] |
Wang G, Li H, Ye C, He K, Liu S, et al. 2024. Quantitative profiling of m6A at single base resolution across the life cycle of rice and Arabidopsis. Nature Communications 15:4881 doi: 10.1038/s41467-024-48941-7 |
| [7] |
Cui C, Ma Z, Wan H, Gao J, Zhou B. 2022. GhALKBH10 negatively regulates salt tolerance in cotton. Plant Physiology and Biochemistry 192:87−100 doi: 10.1016/j.plaphy.2022.09.029 |
| [8] |
Liu P, Liu H, Zhao J, Yang T, Guo S, et al. 2024. Genome-wide identification and functional analysis of mRNA m6A writers in soybean under abiotic stress. Frontiers in Plant Science 15:1446591 doi: 10.3389/fpls.2024.1446591 |
| [9] |
Liu G, Wang J, Hou X. 2020. Transcriptome-wide N6-methyladenosine (m6A) methylome profiling of heat stress in Pak-choi (Brassica rapa ssp. chinensis). Plants 9:1080 doi: 10.3390/plants9091080 |
| [10] |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, et al. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149:1635−46 doi: 10.1016/j.cell.2012.05.003 |
| [11] |
Huang T, He WJ, Li C, Zhang JB, Liao YC, et al. 2022. Transcriptome-wide analyses of RNA m6A methylation in hexaploid wheat reveal its roles in mRNA translation regulation. Frontiers in Plant Science 13:917335 doi: 10.3389/fpls.2022.917335 |
| [12] |
Hou N, Li C, He J, Liu Y, Yu S, et al. 2022. MdMTA-mediated m6A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytologist 234:1294−314 doi: 10.1111/nph.18069 |
| [13] |
Deng H, Cheema J, Zhang H, Woolfenden H, Norris M, et al. 2018. Rice in vivo RNA structurome reveals RNA secondary structure conservation and divergence in plants. Molecular Plant 11:607−22 doi: 10.1016/j.molp.2018.01.008 |
| [14] |
Zhang TY, Wang ZQ, Hu HC, Chen ZQ, Liu P, et al. 2021. Transcriptome-wide N6-methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Frontiers in Microbiology 12:656302 doi: 10.3389/fmicb.2021.656302 |
| [15] |
Xu X, Zhang C, Xu X, Cai R, Guan Q, et al. 2023. Riboflavin mediates m6A modification targeted by miR408, promoting early somatic embryogenesis in longan. Plant Physiology 192:1799−820 doi: 10.1093/plphys/kiad139 |
| [16] |
Wei LH, Song P, Wang Y, Lu Z, Tang Q, et al. 2018. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. The Plant Cell 30:968−85 doi: 10.1105/tpc.17.00934 |
| [17] |
Duan HC, Wei LH, Zhang C, Wang Y, Chen L, et al. 2017. ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. The Plant Cell 29:2995−3011 doi: 10.1105/tpc.16.00912 |
| [18] |
Su D, Shu P, Hu N, Chen Y, Wu Y, et al. 2024. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. New Phytologist 243:2265−78 doi: 10.1111/nph.20008 |
| [19] |
Yue J, Wei Y, Zhao M. 2022. The reversible methylation of m6A is involved in plant virus infection. Biology 11:271 doi: 10.3390/biology11020271 |
| [20] |
Shi H, Wei J, He C. 2019. Where, when, and how: context-dependent functions of RNA methylatIon writers, readers, and erasers. Molecular Cell 74:640−50 doi: 10.1016/j.molcel.2019.04.025 |
| [21] |
Kumari P, Bhattacharjee S, Venkat Raman K, Tilgam J, Paul K, et al. 2025. Identification of methyltransferase and demethylase genes and their expression profiling under biotic and abiotic stress in pigeon pea (Cajanus cajan [L.] Millspaugh). Frontiers in Plant Science 15:1521758 doi: 10.3389/fpls.2024.1521758 |
| [22] |
Yin S, Ao Q, Qiu T, Tan C, Tu Y, et al. 2022. Tomato SlYTH1 encoding a putative RNA m6A reader affects plant growth and fruit shape. Plant Science 323:111417 doi: 10.1016/j.plantsci.2022.111417 |
| [23] |
Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. 1994. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. Journal of Biological Chemistry 269:17697−704 doi: 10.1016/S0021-9258(17)32497-3 |
| [24] |
Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, et al. 2017. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist 215:157−72 doi: 10.1111/nph.14586 |
| [25] |
Zhang M, Bodi Z, Mackinnon K, Zhong S, Archer N, et al. 2022. Two zinc finger proteins with functions in m6A writing interact with HAKAI. Nature Communications 13:1127 doi: 10.1038/s41467-022-28753-3 |
| [26] |
Zhong S, Li H, Bodi Z, Button J, Vespa L, et al. 2008. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. The Plant Cell 20:1278−88 doi: 10.1105/tpc.108.058883 |
| [27] |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177−89 doi: 10.1038/cr.2014.3 |
| [28] |
Shen L, Liang Z, Gu X, Chen Y, Teo ZWN, et al. 2016. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Developmental Cell 38:186−200 doi: 10.1016/j.devcel.2016.06.008 |
| [29] |
Wang C, Yang J, Song P, Zhang W, Lu Q, et al. 2022. FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biology 23:40 doi: 10.1186/s13059-022-02612-2 |
| [30] |
Zhang F, Zhang YC, Liao JY, Yu Y, Zhou YF, et al. 2019. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genetics 15:e1008120 doi: 10.1371/journal.pgen.1008120 |
| [31] |
Du H, Zhao Y, He J, Zhang Y, Xi H, et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communication 7:12626 doi: 10.1038/ncomms12626 |
| [32] |
Ma W, Cui S, Lu Z, Yan X, Cai L, et al. 2022. YTH domain proteins play an essential role in rice growth and stress response. Plants 11:2206 doi: 10.3390/plants11172206 |
| [33] |
Amara U, Hu J, Park SJ, Kang H. 2024. ECT12, an YTH-domain protein, is a potential mRNA m6A reader that affects abiotic stress responses by modulating mRNA stability in Arabidopsis. Physiology and Biochemistry 206:108255 doi: 10.1016/j.plaphy.2023.108255 |
| [34] |
Song P, Yang J, Wang C, Lu Q, Shi L, et al. 2021. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Molecular Plant 14:571−87 doi: 10.1016/j.molp.2021.01.014 |
| [35] |
Arribas-Hernández L, Bressendorff S, Hansen MH, Poulsen C, Erdmann S, et al. 2018. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. The Plant Cell 30:952−67 doi: 10.1105/tpc.17.00833 |
| [36] |
Zhou L, Tang R, Li X, Tian S, Li B, et al. 2021. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology 22:168 doi: 10.1186/s13059-021-02385-0 |
| [37] |
Wu J, Peled-Zehavi H, Galili G. 2020. The m6A reader ECT2 post-transcriptionally regulates proteasome activity in Arabidopsis. New Phytologist 228:151−62 doi: 10.1111/nph.16660 |
| [38] |
Nguyen TKH, Amara U, Kang H. 2025. ECT8, an mRNA m6A reader, enhances salt stress tolerance by modulating mRNA stability in Arabidopsis. Physiologia Plantarum 177:e70135 doi: 10.1111/ppl.70135 |
| [39] |
Amara U, Hu J, Cai J, Kang H. 2023. FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis. Molecular Plant 16:919−29 doi: 10.1016/j.molp.2023.04.005 |
| [40] |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology 7:885−87 doi: 10.1038/nchembio.687 |
| [41] |
Amara U, Shoaib Y, Kang H. 2022. ALKBH9C, a potential RNA m6A demethylase, regulates the response of Arabidopsis to abiotic stresses and abscisic acid. Plant, Cell & Environment 45:3566−81 doi: 10.1111/pce.14447 |
| [42] |
Huong TT, Ngoc LNT, Kang H. 2020. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. International Journal of Molecular Sciences 21:6707 doi: 10.3390/ijms21186707 |
| [43] |
Zhou L, Tian S, Qin G. 2019. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biology 20:156 doi: 10.1186/s13059-019-1771-7 |
| [44] |
Li B, Zhang M, Sun W, Yue D, Ma Y, et al. 2023. N6-methyladenosine RNA modification regulates cotton drought response in a Ca2+ and ABA-dependent manner. Plant Biotechnology Journal 21:1270−85 doi: 10.1111/pbi.14036 |
| [45] |
Chen M, Urs MJ, Sánchez-González I, Olayioye MA, Herde M, et al. 2018. m6A RNA degradation products are catabolized by an evolutionarily conserved N6-Methyl-AMP deaminase in plant and mammalian cells. The Plant Cell 30:1511−22 doi: 10.1105/tpc.18.00236 |
| [46] |
Yu Q, Liu S, Yu L, Xiao Y, Zhang S, et al. 2021. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nature Biotechnology 39:1581−88 doi: 10.1038/s41587-021-00982-9 |
| [47] |
Anderson SJ, Kramer MC, Gosai SJ, Yu X, Vandivier LE, et al. 2018. N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Reports 25:1146−1157.e3 doi: 10.1016/j.celrep.2018.10.020 |
| [48] |
Song P, Wei L, Chen Z, Cai Z, Lu Q, et al. 2023. m6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biology 24:103 doi: 10.1186/s13059-023-02947-4 |
| [49] |
Boo SH, Ha H, Kim YK. 2022. m1A and m6A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Reports 40:111317 doi: 10.1016/j.celrep.2022.111317 |
| [50] |
Shi C, Zou W, Liu X, Zhang H, Li X, et al. 2024. Programmable RNA N6-methyladenosine editing with CRISPR/dCas13a in plants. Plant Biotechnology Journal 22:1867−80 doi: 10.1111/pbi.14307 |
| [51] |
Coots RA, Liu XM, Mao Y, Dong L, Zhou J, et al. 2017. m6A facilitates eIF4F-independent mRNA translation. Molecular Cell 68:504−514.e7 doi: 10.1016/j.molcel.2017.10.002 |
| [52] |
Luo JH, Wang Y, Wang M, Zhang LY, Peng HR, et al. 2020. Natural variation in RNA m6A methylation and its relationship with translational status. Plant Physiology 182:332−44 doi: 10.1104/pp.19.00987 |
| [53] |
Guo T, Yang Z, Bao R, Fu X, Wang N, et al. 2023. The m6A reader MhYTP2 regulates the stability of its target mRNAs contributing to low nitrogen tolerance in apple (Malus domestica). Horticulture Research 10:uhad094 doi: 10.1093/hr/uhad094 |
| [54] |
Cai J, Hu J, Amara U, Park SJ, Li Y, et al. 2023. Arabidopsis N6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting the splicing of FLC and the stability of floral activators SPL3 and SEP3. Journal of Experimental Botany 74:864−77 doi: 10.1093/jxb/erac461 |
| [55] |
Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, et al. 2022. m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. eLife 11:e78808 doi: 10.7554/eLife.78808 |
| [56] |
Bhat SS, Bielewicz D, Gulanicz T, Bodi Z, Yu X, et al. 2020. mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 117:21785−95 doi: 10.1073/pnas.2003733117 |
| [57] |
Bodi Z, Zhong S, Mehra S, Song J, Graham N, et al. 2012. Adenosine methylation in Arabidopsis mRNA is sssociated with the 3' end and reduced levels cause developmental defects. Frontiers in Plant Science 3:48 doi: 10.3389/fpls.2012.00048 |
| [58] |
Lu L, Zhang Y, He Q, Qi Z, Zhang G, et al. 2020. MTA, an RNA m6A methyltransferase, enhances drought tolerance by regulating the development of trichomes and roots in poplar. International Journal of Molecular Science 21:2462 doi: 10.3390/ijms21072462 |
| [59] |
Huang X, Abuduwaili N, Wang X, Tao M, Wang X, Huang G. 2022. Cotton (Gossypium hirsutum) VIRMA as an N6-methyladenosine RNA methylation regulator participates in controlling chloroplast-dependent and independent leaf development. International Journal of Molecular Sciences 23:9887 doi: 10.3390/ijms23179887 |
| [60] |
Han X, Wang J, Zhang Y, Kong Y, Dong H, et al. 2023. Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. Journal of Hazardous Materials 441:129843 doi: 10.1016/j.jhazmat.2022.129843 |
| [61] |
Su T, Fu L, Kuang L, Chen D, Zhang G, et al. 2022. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Journal of Hazardous Materials 423:127140 doi: 10.1016/j.jhazmat.2021.127140 |
| [62] |
Due Tankmar M, Reichel M, Arribas-Hernández L, Brodersen P. 2023. A YTHDF-PABP interaction is required for m6A-mediated organogenesis in plants. EMBO Reports 24:e57741 doi: 10.15252/embr.202357741 |
| [63] |
Wang X, Jiang B, Gu L, Chen Y, Mora M, et al. 2021. A photoregulatory mechanism of the circadian clock in Arabidopsis. Nature Plants 7:1397−408 doi: 10.1038/s41477-021-01002-z |
| [64] |
Lim MH, Kim J, Kim YS, Chung KS, Seo YH, et al. 2004. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16:731−40 doi: 10.1105/tpc.019331 |
| [65] |
Tan T, Li Y, Tang B, Chen Y, Chen X, et al. 2022. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. Plant Science 319:111266 doi: 10.1016/j.plantsci.2022.111266 |
| [66] |
Sheikh AH, Tabassum N, Rawat A, Almeida Trapp M, Nawaz K, Hirt H. 2024. m6A RNA methylation counteracts dark-induced leaf senescence in Arabidopsis. Plant Physiology 194:2663−78 doi: 10.1093/plphys/kiad660 |
| [67] |
Lavi S, Shatkin AJ. 1975. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proceedings of the National Academy of Sciences of the United States of America 72:2012−16 doi: 10.1073/pnas.72.6.2012 |
| [68] |
Yue J, Wei Y, Sun Z, Chen Y, Wei X, et al. 2022. AlkB RNA demethylase homologues and N6-methyladenosine are involved in Potyvirus infection. Molecular Plant Pathology 23:1555−64 doi: 10.1111/mpp.13239 |
| [69] |
Martínez-Pérez M, Aparicio F, Arribas-Hernández L, Tankmar MD, Rennie S, et al. 2023. Plant YTHDF proteins are direct effectors of antiviral immunity against an N6-methyladenosine-containing RNA virus. EMBO Journal 42:e113378 doi: 10.15252/embj.2022113378 |
| [70] |
Zhang T, Shi C, Hu H, Zhang Z, Wang Z, et al. 2022. N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nature Communications 13:6576 doi: 10.1038/s41467-022-34362-x |
| [71] |
He H, Ge L, Chen Y, Zhao S, Li Z, et al. 2024. m6A modification of plant virus enables host recognition by NMD factors in plants. Science China Life Sciences 67:161−74 doi: 10.1007/s11427-022-2377-1 |
| [72] |
Lu M, Zhang Z, Xue M, Zhao BS, Harder O, et al. 2020. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nature Microbiology 5:584−98 doi: 10.1038/s41564-019-0653-9 |
| [73] |
He M, Li Z, Xie X. 2023. The Roles of N6-methyladenosine modification in plant-RNA virus interactions. International Journal of Molecular Sciences 24:15608 doi: 10.3390/ijms242115608 |
| [74] |
Li Z, Shi J, Yu L, Zhao X, Ran L, et al. 2018. N6-methyl-adenosine level in Nicotiana tabacum is associated with tobacco mosaic virus. Virology Journal 15:87 doi: 10.1186/s12985-018-0997-4 |
| [75] |
He Y, Li L, Yao Y, Li Y, Zhang H, et al. 2021. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biology 21:516 doi: 10.1186/s12870-021-03289-8 |
| [76] |
Zhao K, Li Z, Ke Y, Ren R, Cao Z, et al. 2024. Dynamic N6-methyladenosine RNA modification regulates peanut resistance to bacterial wilt. New Phytologist 242:231−46 doi: 10.1111/nph.19568 |
| [77] |
Guo T, Liu C, Meng F, Hu L, Fu X, et al. 2022. The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnology Journal 20:511−25 doi: 10.1111/pbi.13733 |
| [78] |
Alvarado-Marchena L, Martínez-Pérez M, Úbeda JR, Pallas V, Aparicio F. 2022. Impact of the potential m6A modification sites at the 3'UTR of Alfalfa Mosaic Virus RNA3 in the viral infection. Viruses 14:1718 doi: 10.3390/v14081718 |
| [79] |
Yue J, Lu Y, Sun Z, Guo Y, León DS, et al. 2023. Methyltransferase-like (METTL) homologues participate in Nicotiana benthamiana antiviral responses. Plant Signaling & Behavior 18:2214760 doi: 10.1080/15592324.2023.2214760 |
| [80] |
Cai Z, Tang Q, Song P, Tian E, Yang J, et al. 2024. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. The Plant Cell 36:2908−26 doi: 10.1093/plcell/koae149 |
| [81] |
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, et al. 2023. The plant cytosolic m6A RNA methylome stabilizes photosynthesis in the cold. Plant Communications 4:100634 doi: 10.1016/j.xplc.2023.100634 |
| [82] |
Yang D, Xu H, Liu Y, Li M, Ali M, et al. 2021. RNA N6-methyladenosine responds to low-temperature stress in tomato anthers. Frontiers in Plant Science 12:687826 doi: 10.3389/fpls.2021.687826 |
| [83] |
Shen H, Luo B, Wang Y, Li J, Hu Z, et al. 2022. Genome-wide identification, classification and expression analysis of m6A gene family in Solanum lycopersicum. International Journal of Molecular Sciences 23:4522 doi: 10.3390/ijms23094522 |
| [84] |
Ma L, Tao X, Fahim AM, Xu Y, Zhang Y, et al. 2025. Novel insights into the unique characterization of N6-methyladenosine RNA modification and regulating cold tolerance in winter Brassica rapa. International Journal of Biological Macromolecules 303:140460 doi: 10.1016/j.ijbiomac.2025.140460 |
| [85] |
Cai J, Hu J, Xu T, Kang H. 2024. FIONA1-mediated mRNA m6A methylation regulates the response of Arabidopsis to salt stress. Plant, Cell & Environment 47:900−12 doi: 10.1111/pce.14807 |
| [86] |
Hu J, Cai J, Park SJ, Lee K, Li Y, et al. 2021. N6 -methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant Journal 106:1759−75 doi: 10.1111/tpj.15270 |
| [87] |
Wang Y, Du F, Li Y, Wang J, Zhao X, et al. 2022. Global N6-methyladenosine profiling revealed the tissue-specific epitranscriptomic regulation of Rice responses to salt stress. International Journal of Molecular Sciences 23:2091 doi: 10.3390/ijms23042091 |
| [88] |
Zheng H, Dang Y, Gao Y, Li S, Wu F, et al. 2024. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. Plant Physiology 196:3048−70 doi: 10.1093/plphys/kiae529 |
| [89] |
Shen H, Zhou Y, Liao C, Xie Q, Chen G, et al. 2024. The AlkB homolog SlALKBH10B negatively affects drought and salt tolerance in Solanum lycopersicum. International Journal of Molecular Sciences 25:173 doi: 10.3390/ijms25010173 |
| [90] |
Liu H, Lin M, Wang H, Li X, Zhou D, et al. 2024. N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). Plant Science 342:112023 doi: 10.1016/j.plantsci.2024.112023 |
| [91] |
Li J, Pang Q, Yan X. 2023. Unique features of the m6A methylome and its response to salt stress in the roots of sugar beet (Beta vulgaris). International Journal of Molecular Sciences 24:11659 doi: 10.3390/ijms241411659 |
| [92] |
Zhao Y, Guo Q, Cao S, Tian Y, Han K, et al. 2022. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. Frontiers in Plant Science 13:994154 doi: 10.3389/fpls.2022.994154 |
| [93] |
Hu J, Manduzio S, Kang H. 2019. Epitranscriptomic RNA methylation in plant development and abiotic stress responses. Frontiers in Plant Science 10:500 doi: 10.3389/fpls.2019.00500 |
| [94] |
Luo W, Tang Y, Li S, Zhang L, Liu Y, et al. 2023. The m6A reader SiYTH1 enhances drought tolerance by affecting the messenger RNA stability of genes related to stomatal closure and reactive oxygen species scavenging in Setaria italica. Journal of Integrative Plant Biology 65:2569−86 doi: 10.1111/jipb.13575 |
| [95] |
Wang Z, Tang K, Zhang D, Wan Y, Wen Y, et al. 2017. High-throughput m6A-seq reveals RNA m6A methylation patterns in the chloroplast and mitochondria transcriptomes of Arabidopsis thaliana. PLoS One 12:e0185612 doi: 10.1371/journal.pone.0185612 |
| [96] |
Luo JH, Guo T, Wang M, Liu JH, Zheng LM, He Y. 2024. RNA m6A modification facilitates DNA methylation during maize kernel development. Plant Physiology 194:2165−82 doi: 10.1093/plphys/kiad625 |
| [97] |
Liufu Y, Xi F, Wu L, Zhang Z, Wang H, et al. 2023. Inhibition of DNA and RNA methylation disturbs root development of moso bamboo. Tree Physiology 43:1653−74 doi: 10.1093/treephys/tpad074 |
| [98] |
Li J, Tian W, Chen T, Liu QY, Wu HW, et al. 2025. N6-methyladenosine on the natural antisense transcript of NIA1 stabilizes its mRNA to boost NO biosynthesis and modulate stomatal movement. Molecular Plant 18:151−65 doi: 10.1016/j.molp.2024.12.011 |
| [99] |
Li Y, Wang Y, Vera-Rodriguez M, Lindeman LC, Skuggen LE, et al. 2024. Single-cell m6A mapping in vivo using picoMeRIP-seq. Nature Biotechnology 42:591−96 doi: 10.1038/s41587-023-01831-7 |
| [100] |
Hu L, Liu S, Peng Y, Ge R, Su R, et al. 2022. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nature Biotechnology 40:1210−19 doi: 10.1038/s41587-022-01243-z |