| [1] |
Kumar A, Mushtaq M, Kumar P, Sharma DP, Gahlaut V. 2024. Insights into flowering mechanisms in apple (Malus × domestica Borkh.) amidst climate change: an exploration of genetic and epigenetic factors. Biochimica et Biophysica Acta (BBA) - General Subjects 1868:130593 doi: 10.1016/j.bbagen.2024.130593 |
| [2] |
Song GQ, Liu Z, Zhong GY. 2024. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. Frontiers in Plant Science 15:1336892 doi: 10.3389/fpls.2024.1336892 |
| [3] |
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, et al. 2022. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. The Plant Cell 34:1002−19 doi: 10.1093/plcell/koab298 |
| [4] |
Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, et al. 2012. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant Cell 24:1848−59 doi: 10.1105/tpc.112.097105 |
| [5] |
Sawicki M, Jacquens L, Baillieul F, Clément C, Vaillant-Gaveau N, et al. 2015. Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development. Physiologia Plantarum 154:447−67 doi: 10.1111/ppl.12321 |
| [6] |
Belhassine F, Martinez S, Bluy S, Fumey D, Kelner JJ, et al. 2019. Impact of within-tree organ distances on floral induction and fruit growth in apple tree: implication of carbohydrate and gibberellin organ contents. Frontiers in Plant Science 10:1233 doi: 10.3389/fpls.2019.01233 |
| [7] |
Eshghi S, Tafazoli E. 2006. Possible role of non-structural carbohydrates in flower induction in strawberry. The Journal of Horticultural Science and Biotechnology 81:854−58 doi: 10.1080/14620316.2006.11512149 |
| [8] |
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, et al. 2021. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. Planta 255:24 doi: 10.1007/s00425-021-03801-2 |
| [9] |
Xing LB, Zhang D, Li YM, Shen YW, Zhao CP, et al. 2015. Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.). Plant and Cell Physiology 56:2052−68 doi: 10.1093/pcp/pcv124 |
| [10] |
Du L, Qi S, Ma J, Xing L, Fan S, et al. 2017. Identification of TPS family members in apple (Malus × domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry 120:10−23 doi: 10.1016/j.plaphy.2017.09.015 |
| [11] |
Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, et al. 2001. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology 127:252−61 doi: 10.1104/pp.127.1.252 |
| [12] |
Wang P, Wei P, Niu F, Liu X, Zhang H, et al. 2019. Cloning and functional assessments of floral-expressed SWEET transporter genes from Jasminum sambac. International Journal of Molecular Sciences 20:4001 doi: 10.3390/ijms20164001 |
| [13] |
Zhang Q, Zhang M, Zhao YQ, Hu H, Huang YX, et al. 2022. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium × formolongi. Plant Physiology and Biochemistry 171:84−94 doi: 10.1016/j.plaphy.2021.12.025 |
| [14] |
Ramírez F, Davenport TL. 2010. Mango (Mangifera indica L.) flowering physiology. Scientia Horticulturae 126:65−72 doi: 10.1016/j.scienta.2010.06.024 |
| [15] |
Wan X, Zou LH, Pan X, Ge Y, Jin L, et al. 2024. Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC Plant Biology 24:159 doi: 10.1186/s12870-024-04869-0 |
| [16] |
Zhang MZ, Wang LL, Ye D, Chen X, Wu ZY, et al. 2012. Sucrose treatment alters floral induction and development in vitro in gloxinia. In Vitro Cellular & Developmental Biology - Plant 48:167−71 doi: 10.1007/s11627-012-9424-5 |
| [17] |
Yoon J, Cho LH, Tun W, Jeon JS, An G. 2021. Sucrose signaling in higher plants. Plant Science 302:110703 doi: 10.1016/j.plantsci.2020.110703 |
| [18] |
Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, et al. 2020. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC Plant Biology 20:53 doi: 10.1186/s12870-020-2266-0 |
| [19] |
Silva S, Costa EM, Veiga M, Morais RM, Calhau C, et al. 2020. Health promoting properties of blueberries: a review. Critical Reviews in Food Science and Nutrition 60:181−200 doi: 10.1080/10408398.2018.1518895 |
| [20] |
Cheon MG, Lee SH, Park KM, Choi ST, Hwang YH, et al. 2021. Effects of different pruning time on bush growth and fruit production of southern highbush blueberry 'Scintilla' cultivated in a heated plastic house. Journal of Bio-Environment Control 30:183−87 doi: 10.12791/KSBEC.2021.30.3.183 |
| [21] |
Santos AD, Bandeira E Sousa M, Cunha Alves AA, de Oliveira EJ. 2023. Flowering induction in cassava using photoperiod extension premature pruning and plant growth regulators. PLoS One 18:e0292385 doi: 10.1371/journal.pone.0292385 |
| [22] |
Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA. 2014. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America 111:6092−97 doi: 10.1073/pnas.1322045111 |
| [23] |
de Carvalho Lopes R, Pereira RN, dos Santos Silva L, Lobo JT, Amariz RAE, et al. 2021. Impact of first mechanical fructification pruning on mango orchards. International Journal of Fruit Science 21:1059−72 doi: 10.1080/15538362.2021.1989358 |
| [24] |
He S, Hou Z, Wang Y, Qin C, Jiang Y, et al. 2024. Effects of shoot pruning in autumn on buds differentiation and endogenous hormones of Vaccinium spp. in greenhouse. Journal of Agricultural Science and Technology 26:55−62 doi: 10.13304/j.nykjdb.2022.0966 |
| [25] |
Kovaleski AP, Williamson JG, Casamali B, Darnell RL. 2015. Effects of timing and intensity of summer pruning on vegetative traits of two southern highbush blueberry cultivars. HortScience 50:68−73 doi: 10.21273/HORTSCI.50.1.68 |
| [26] |
Kang DI, Shin MH, Kim HL, Kim JG. 2016. Effects of winter and summer pruning on yield and fruit quality in southern highbush blueberry 'Misty'. Protected Horticulture and Plant Factory 25:328−33 doi: 10.12791/KSBEC.2016.25.4.328 |
| [27] |
Karimi F, Igata M, Baba T, Noma S, Mizuta D, et al. 2017. Summer pruning differentiates vegetative buds to flower buds in the rabbiteye blueberry (Vaccinium virgatum Ait.). The Horticulture Journal 86:300−4 doi: 10.2503/hortj.MI-158 |
| [28] |
Karimi F, Baba T, Noma S, Mizuta D, Kim JG, et al. 2019. Summer pruning severity affected vegetative and reproductive traits in the rabbiteye blueberry (Vaccinium virgatum Ait.). The Horticulture Journal 88:315−19 doi: 10.2503/hortj.OKD-129 |
| [29] |
Kang DI, Shin MH, Lee SG, Kim HL, Kim JG. 2018. Influence of winter and summer pruning on bush growth, yield and fruit qualities in the southern highbush blueberry 'Misty'. Horticultural Science and Technology 36:799−809 doi: 10.12972/kjhst.20180078 |
| [30] |
Munoz-Vega P, Serri H, Lopez MD, Faundez M, Palma P. 2017. Effect of different pruning intensities on yield and fruit quality of blueberry (Vaccinium corymbosum L.) cv. Brigitta. Chilean Journal of Agricultural & Animal Sciences 33:285−94 |
| [31] |
Lee SG, Cho JG, Shin MH, Oh SB, Kim HL, et al. 2015. Effects of summer pruning combined with winter pruning on bush growth, yields, and fruit quality of 'Misty' southern highbush blueberry for two years after planting. Horticulture, Environment, and Biotechnology 56:740−48 doi: 10.1007/s13580-015-0101-6 |
| [32] |
Susanto S, Melati M, Aziz SA. 2019. Pruning to improve flowering and fruiting of 'Crystal' guava. AGRIVITA Journal of Agricultural Science 41:48−54 doi: 10.17503/agrivita.v41i1.1954 |
| [33] |
Mahesha M, Singh SR. 2018. Effects of ga3 and shoot pruning on flowering and yield in assam lemon (Citrus limon Burm. f.). Bangladesh Journal of Botany 47:509−14 doi: 10.3329/bjb.v47i3.38719 |
| [34] |
Wei K, Li M, Chen N, Qiao Z, Xu J. 2020. Physiological mechanism and developmental events in differentiating floral buds of Sophora tonkinensis gagnep. Pharmacognosy Magazine 16:83−91 doi: 10.4103/pm.pm_174_19 |
| [35] |
Hansen J, Møller I. 1975. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry 68:87−94 doi: 10.1016/0003-2697(75)90682-X |
| [36] |
Yang J, Li B, Shi W, Gong Z, Chen L, et al. 2018. Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. Journal of Agricultural and Food Chemistry 66:10931−42 doi: 10.1021/acs.jafc.8b03081 |
| [37] |
Yang J, Shi W, Li B, Bai Y, Hou Z. 2019. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry 301:125248 doi: 10.1016/j.foodchem.2019.125248 |
| [38] |
Song GQ, Sink KC. 2004. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Reports 23:475−84 doi: 10.1007/s00299-004-0842-7 |
| [39] |
Lu B, Chen L, Hao J, Zhang Y, Huang J. 2020. Comparative transcription profiles reveal that carbohydrates and hormone signalling pathways mediate flower induction in Juglans sigillata after girdling. Industrial Crops and Products 153:112556 doi: 10.1016/j.indcrop.2020.112556 |
| [40] |
Cho LH, Pasriga R, Yoon J, Jeon JS, An G. 2018. Roles of sugars in controlling flowering time. Journal of Plant Biology 61:121−30 doi: 10.1007/s12374-018-0081-z |
| [41] |
Bodson M. 1977. Changes in the carbohydrate content of the leaf and the apical bud of Sinapis during transition to flowering. Planta 135:19−23 doi: 10.1007/BF00387970 |
| [42] |
Dun EA, Ferguson BJ, Beveridge CA. 2006. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiology 142:812−19 doi: 10.1104/pp.106.086868 |
| [43] |
Furet PM, Lothier J, Demotes-Mainard S, Travier S, Henry C, et al. 2014. Light and nitrogen nutrition regulate apical control in Rosa hybrida L. Journal of Plant Physiology 171:7−13 doi: 10.1016/j.jplph.2013.10.008 |
| [44] |
Croxdale JG. 1977. Accumulation of 32P and [14C]sucrose in decapitated and intact shoots of the fern Davallia trichomanoides blume. Planta 133:111−15 doi: 10.1007/BF00391907 |
| [45] |
Wang CY, Chiou CY, Wang HL, Krishnamurthy R, Venkatagiri S, et al. 2008. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227:1063−77 doi: 10.1007/s00425-007-0681-1 |
| [46] |
Borghi M, de Souza LP, Tohge T, Mi J, Melandri G, et al. 2022. High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology 190:319−39 doi: 10.1093/plphys/kiac253 |
| [47] |
Su Z, Xiao Q, Shen J, Chen H, Yan S, et al. 2021. Metabolomics analysis of litchi leaves during floral induction reveals metabolic improvement by stem girdling. Molecules 26:4048 doi: 10.3390/molecules26134048 |
| [48] |
Nunes C, O'Hara LE, Primavesi LF, Delatte TL, Schluepmann H, et al. 2013. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiology 162:1720−32 doi: 10.1104/pp.113.220657 |
| [49] |
Zhang S, Peng F, Xiao Y, Wang W, Wu X. 2020. Peach PpSnRK1 participates in sucrose-mediated root growth through auxin signaling. Frontiers in Plant Science 11:409 doi: 10.3389/fpls.2020.00409 |
| [50] |
Ren Z, He S, Zhao N, Zhai H, Liu Q. 2019. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. Plant Biotechnology Journal 17:21−32 doi: 10.1111/pbi.12944 |
| [51] |
Hu Y, Liu J, Lin Y, Xu X, Xia Y, et al. 2022. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. Plant Physiology 189:1694−714 doi: 10.1093/plphys/kiac124 |
| [52] |
Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, et al. 2022. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nature Plants 8:1245−61 doi: 10.1038/s41477-022-01269-w |
| [53] |
Tsai AY, Gazzarrini S. 2014. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Frontiers in Plant Science 5:119 doi: 10.3389/fpls.2014.00119 |
| [54] |
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704−7 doi: 10.1126/science.1230406 |
| [55] |
Périlleux C, Bernier G. 1997. Leaf carbohydrate status in Lolium temulentum during the induction of flowering. New Phytologist 135:59−66 doi: 10.1046/j.1469-8137.1997.00629.x |
| [56] |
Van Ende W. 2014. Sugars take a central position in plant growth, development and stress responses. A focus on apical dominance. Frontiers in Plant Science 5:313 doi: 10.3389/fpls.2014.00313 |
| [57] |
Wang H, Yu H, Chai L, Lu T, Li Y, et al. 2023. Exogenous sucrose confers low light tolerance in tomato plants by increasing carbon partitioning from stems to leaves. Journal of Agricultural and Food Chemistry 71:20625−42 doi: 10.1021/acs.jafc.3c05985 |
| [58] |
Shen S, Ma S, Chen XM, Yi F, Li BB, et al. 2022. A transcriptional landscape underlying sugar import for grain set in maize. The Plant Journal 110:228−42 doi: 10.1111/tpj.15668 |
| [59] |
Kebrom TH, Doust AN. 2022. Activation of apoplastic sugar at the transition stage may be essential for axillary bud outgrowth in the grasses. Frontiers in Plant Science 13:1023581 doi: 10.3389/fpls.2022.1023581 |
| [60] |
Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201:1150−55 doi: 10.1111/nph.12445 |
| [61] |
Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, et al. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology 164:777−89 doi: 10.1104/pp.113.232751 |
| [62] |
Braun DM. 2022. Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annual Review of Plant Biology 73:553−84 doi: 10.1146/annurev-arplant-070721-083240 |
| [63] |
Wei X, Nguyen STT, Collings DA, McCurdy DW. 2020. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. Journal of Experimental Botany 71:4690−702 doi: 10.1093/jxb/eraa246 |
| [64] |
Chun YL, Shi JX, Weiss D, Goldschmidt EE. 2003. Sugars regulate sucrose transporter gene expression in citrus. Biochemical and Biophysical Research Communications 306:402−7 doi: 10.1016/S0006-291X(03)00978-1 |
| [65] |
Gu J, Zeng Z, Wang Y, Lyu Y. 2020. Transcriptome analysis of carbohydrate metabolism genes and molecular regulation of sucrose transport gene LoSUT on the flowering process of developing oriental hybrid lily 'Sorbonne' Bulb. International Journal of Molecular Sciences 21:3092 doi: 10.3390/ijms21093092 |
| [66] |
Lee HG, Seo PJ. 2021. Transcriptional activation of SUGAR TRANSPORT PROTEIN 13 mediates biotic and abiotic stress signaling. Plant Signaling & Behavior 16:1920759 doi: 10.1080/15592324.2021.1920759 |
| [67] |
Jang S, Torti S, Coupland G. 2009. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. The Plant Journal 60:614−25 doi: 10.1111/j.1365-313X.2009.03986.x |
| [68] |
Chen Q, Payyavula RS, Chen L, Zhang J, Zhang C, et al. 2018. FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins. Proceedings of the National Academy of Sciences of the United States of America 115:2830−35 doi: 10.1073/pnas.1719455115 |
| [69] |
Torti S, Fornara F. 2012. AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition. Plant Signaling & Behavior 7:1251−54 doi: 10.4161/psb.21552 |
| [70] |
Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant & Cell Physiology 46:292−99 doi: 10.1093/pcp/pci024 |
| [71] |
Corbesier L, Coupland G. 2006. The quest for florigen: a review of recent progress. Journal of Experimental Botany 57:3395−403 doi: 10.1093/jxb/erl095 |
| [72] |
Zhang Y, Li Y, Zhang Y, Guan S, Liu C, et al. 2015. Isolation and characterization of a SOC1-like gene from tree peony (Paeonia suffruticosa). Plant Molecular Biology Reporter 33:855−66 doi: 10.1007/s11105-014-0800-7 |
| [73] |
Shi Y, Zhang S, Gui Q, Qing H, Li M, et al. 2024. The SOC1 gene plays an important role in regulating litchi flowering time. Genomics 116:110804 doi: 10.1016/j.ygeno.2024.110804 |
| [74] |
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54 doi: 10.1093/jxb/erq098 |
| [75] |
Pabón-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A. 2013. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. The Plant Journal 74:197−212 doi: 10.1111/tpj.12113 |
| [76] |
Jia Z, Jiang B, Gao X, Yue Y, Fei Z, et al. 2015. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. Plant Cell Reports 34:121−32 doi: 10.1007/s00299-014-1693-5 |
| [77] |
Guo X, Yu C, Luo L, Wan H, Zhen N, et al. 2017. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'. BMC Genomics 18:199 doi: 10.1186/s12864-017-3584-y |
| [78] |
Liu C, Xi W, Shen L, Tan C, Yu H. 2009. Regulation of floral patterning by flowering time genes. Developmental Cell 16:711−22 doi: 10.1016/j.devcel.2009.03.011 |
| [79] |
Balanzà V, Martínez-Fernández I, Ferrándiz C. 2014. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. Journal of Experimental Botany 65:1193−203 doi: 10.1093/jxb/ert482 |