[1]

Wang Y, Cao S, Guan C, Kong X, Wang Y, et al. 2020. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response. Plant Physiology and Biochemistry 149:96−110

doi: 10.1016/j.plaphy.2020.01.036
[2]

Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[3]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[4]

Du Y, Liu X, Zhang L, Zhou W. 2023. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: evidence from a global meta-analysis. Science of The Total Environment 880:163226

doi: 10.1016/j.scitotenv.2023.163226
[5]

Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology 68:405−34

doi: 10.1146/annurev-arplant-042916-040936
[6]

Jin K, Ran Y, Alengebawy A, Yang G, Jia S, Ai P. 2022. Agro-environmental sustainability of using digestate fertilizer for solanaceous and leafy vegetables cultivation: insights on fertilizer efficiency and risk assessment. Journal of Environmental Management 320:115895

doi: 10.1016/j.jenvman.2022.115895
[7]

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19:371−79

doi: 10.1016/j.tplants.2014.02.001
[8]

Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, et al. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

doi: 10.3390/antiox8090384
[9]

Wang Y, Cao Y, Liang X, Zhuang J, Wang X, et al. 2022. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nature Communications 13:2222

doi: 10.1038/s41467-022-29809-0
[10]

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796−804

doi: 10.1111/jipb.12689
[11]

Lu K, Song R, Guo J, Zhang Y, Zuo J, et al. 2023. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. The Plant Cell 35:2570−91

doi: 10.1093/plcell/koad105
[12]

Ma L, Han R, Yang Y, Liu X, Li H, et al. 2023. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance. The Plant Cell 35:2997−3020

doi: 10.1093/plcell/koad117
[13]

Peng Y, Cao H, Peng Z, Zhou L, Sohail H, et al. 2023. Transcriptomic and functional characterization reveals CsHAK5;3 as a key player in K+ homeostasis in grafted cucumbers under saline conditions. Plant Science 326:111509

doi: 10.1016/j.plantsci.2022.111509
[14]

Shen C, Yuan J, Li X, Chen R, Li D, et al. 2023. Genome-wide identification of NHX (Na+/H+ antiporter) gene family in Cucurbita L. and functional analysis of CmoNHX1 under salt stress. Frontiers in Plant Science 14:1136810

doi: 10.3389/fpls.2023.1136810
[15]

Zhang M, Li Y, Liang X, Lu M, Lai J, et al. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal 21:97−108

doi: 10.1111/pbi.13927
[16]

Rodrigues de Queiroz A, Hines C, Brown J, Sahay S, Vijayan J, et al. 2023. The effects of exogenously applied antioxidants on plant growth and resilience. Phytochemistry Reviews 22:407−47

doi: 10.1007/s11101-023-09862-3
[17]

Deng J, Ye J, Liu K, Harrison MT, Zhong X, et al. 2023. Optimizing agronomy improves super hybrid rice yield and nitrogen use efficiency through enhanced post-heading carbon and nitrogen metabolism. Agronomy 13:13

doi: 10.3390/agronomy13010013
[18]

Ma X, Nian J, Yu H, Zhang F, Feng T, et al. 2023. Linking glucose signaling to nitrogen utilization by the OsHXK7-ARE4 complex in rice. Developmental Cell 58:1489−1501.e5

doi: 10.1016/j.devcel.2023.06.003
[19]

Fan X, Naz M, Fan X, Xuan W, Miller AJ, et al. 2017. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany 68:2463−75

doi: 10.1093/jxb/erx011
[20]

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217:35−53

doi: 10.1111/nph.14876
[21]

Liu X, Hu B, Chu C. 2022. Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics 49:394−404

doi: 10.1016/j.jgg.2021.12.006
[22]

Mokhele B, Zhan X, Yang G, Zhang X. 2012. Review: nitrogen assimilation in crop plants and its affecting factors. Canadian Journal of Plant Science 92:399−405

doi: 10.4141/cjps2011-135
[23]

Braun DM, Slewinski TL. 2009. Genetic control of carbon partitioning in grasses: roles of Sucrose Transporters and Tie-dyed loci in phloem loading. Plant Physiology 149:71−81

doi: 10.1104/pp.108.129049
[24]

Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10:95

doi: 10.3389/fpls.2019.00095
[25]

Shang C, Guo Z, Chong H, Xiong X, Deng J, et al. 2022. Higher radiation use efficiency and photosynthetic characteristics after flowering could alleviate the yield loss of Indica-Japonica Hybrid Rice under shading stress. International Journal of Plant Production 16:105−17

doi: 10.1007/s42106-021-00180-2
[26]

Zhang X, He P, Guo R, Huang K, Huang X. 2023. Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Scientific Reports 13:12483

doi: 10.1038/s41598-023-39634-0
[27]

Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, et al. 2023. Sustaining nitrogen dynamics: a critical aspect for improving salt tolerance in plants. Frontiers in Plant Science 14:1087946

doi: 10.3389/fpls.2023.1087946
[28]

Jian G, Mo Y, Hu Y, Huang Y, Ren L, et al. 2022. Variety-specific transcriptional and alternative splicing regulations modulate salt tolerance in rice from early stage of stress. Rice 15:56

doi: 10.1186/s12284-022-00599-9
[29]

Liang H, Shi Q, Li X, Gao P, Feng D, et al. 2024. Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress. Horticultural Plant Journal 10:461−72

doi: 10.1016/j.hpj.2022.09.003
[30]

Wang L, He M, Guo S, Zhong M, Shu S, et al. 2017. NaCl stress induces CsSAMs gene expression in Cucumis sativus by mediating the binding of CsGT-3b to the GT-1 element within the CsSAMs promoter. Planta 245:889−908

doi: 10.1007/s00425-017-2650-7
[31]

Fontecave M, Atta M, Mulliez E. 2004. S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29:243−49

doi: 10.1016/j.tibs.2004.03.007
[32]

Guo Z, Tan J, Zhuo C, Wang C, Xiang B, et al. 2014. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnology Journal 12:601−12

doi: 10.1111/pbi.12166
[33]

Wang X, Oh MW, Komatsu S. 2016. Characterization of S-adenosylmethionine synthetases in soybean under flooding and drought stresses. Biologia Plantarum 60:269−78

doi: 10.1007/s10535-016-0586-6
[34]

Ezaki B, Higashi A, Nanba N, Nishiuchi T. 2016. An S-adenosyl methionine synthetase (SAMS) gene from Andropogon virginicus L. confers aluminum stress tolerance and facilitates epigenetic gene regulation in Arabidopsis thaliana. Frontiers in Plant Science 7:1627

doi: 10.3389/fpls.2016.01627
[35]

Heidari P, Mazloomi F, Nussbaumer T, Barcaccia G. 2020. Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments. Plants 9:586

doi: 10.3390/plants9050586
[36]

Liu Y, Ge L, Tang H, Zheng J, Hu J, et al. 2023. cGMP functions as an important messenger involved in SlSAMS1-regulated salt stress tolerance in tomato. Plant Physiology and Biochemistry 204:108097

doi: 10.1016/j.plaphy.2023.108097
[37]

Zhang X, Bao Z, Gong B, Shi Q. 2020. S-adenosylmethionine synthetase 1 confers drought and salt tolerance in transgenic tomato. Environmental and Experimental Botany 179:104226

doi: 10.1016/j.envexpbot.2020.104226
[38]

Cai Y, Zhang H, Qi Y, Ye X, Huang Z, et al. 2019. Responses of reactive oxygen species and methylglyoxal metabolisms to magnesium-deficiency differ greatly among the roots, upper and lower leaves of Citrus sinensis. BMC Plant Biology 19:76

doi: 10.1186/s12870-019-1683-4
[39]

Gong B, Li X, Van den Langenberg KM, Wen D, Sun S, et al. 2014. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal 12:694−708

doi: 10.1111/pbi.12173
[40]

Du J, Shu S, An Y, Zhou H, Guo S, et al. 2017. Influence of exogenous spermidine on carbon–nitrogen metabolism under Ca(NO3)2 stress in cucumber root. Plant Growth Regulation 81:103−15

doi: 10.1007/s10725-016-0193-8
[41]

Meng S, Zhang C, Su L, Li Y, Zhao Z. 2016. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environmental and Experimental Botany 123:78−87

doi: 10.1016/j.envexpbot.2015.11.005
[42]

Golldack D, Li C, Mohan H, Probst N. 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science 5:151

doi: 10.3389/fpls.2014.00151
[43]

Dong L, Li L, Meng Y, Liu H, Li J, et al. 2022. Exogenous spermidine optimizes nitrogen metabolism and improves maize yield under drought stress conditions. Agriculture 12:1270

doi: 10.3390/agriculture12081270
[44]

Wang Y, Cao H, Wang S, Guo J, Dou H, et al. 2023. Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings. Ecotoxicology and Environmental Safety 254:114756

doi: 10.1016/j.ecoenv.2023.114756
[45]

Shen J, Wang Y, Shu S, Jahan MS, Zhong M, et al. 2019. Exogenous putrescine regulates leaf starch overaccumulation in cucumber under salt stress. Scientia Horticulturae 253:99−110

doi: 10.1016/j.scienta.2019.04.010
[46]

Lang D, Yu X, Jia X, Li Z, Zhang X. 2020. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Scientia Horticulturae 266:109287

doi: 10.1016/j.scienta.2020.109287
[47]

Yang Z, Li J, Liu L, Xie Q, Sui N. 2019. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science 10:1722

doi: 10.3389/fpls.2019.01722
[48]

Colin L, Ruhnow F, Zhu JK, Zhao C, Zhao Y, et al. 2023. The cell biology of primary cell walls during salt stress. The Plant Cell 35:201−17

doi: 10.1093/plcell/koac292
[49]

Ma C, Wang Y, Gu D, Nan J, Chen S, et al. 2017. Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. International Journal of Molecular Sciences 18:847

doi: 10.3390/ijms18040847
[50]

He M, Wang Y, Wu J, Shu S, Sun J, et al. 2019. Isolation and characterization of S-adenosylmethionine synthase gene from cucumber and responsive to abiotic stress. Plant Physiology and Biochemistry 141:431−45

doi: 10.1016/j.plaphy.2019.06.006
[51]

Di Martino C, Fioretto A, Palmieri D, Torino V, Palumbo G. 2019. Influence of tomato plant mycorrhization on nitrogen metabolism, growth and fructification on P-limited soil. Journal of Plant Growth Regulation 38:1183−95

doi: 10.1007/s00344-019-09923-y
[52]

Mahmud M, Maxwell TL, Cueff S, Schroeder R, Bazot S, et al. 2022. Recently absorbed nitrogen incorporates into new and old tissues: evidence from a 15N-labelling experiment in deciduous oaks. Plant and Soil 480:407−21

doi: 10.1007/s11104-022-05589-w
[53]

Ahammed GJ, Li X. 2023. Dopamine-induced abiotic stress tolerance in horticultural plants. Scientia Horticulturae 307:111506

doi: 10.1016/j.scienta.2022.111506
[54]

Konishi M, Yanagisawa S. 2011. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant and Cell Physiology 52:824−36

doi: 10.1093/pcp/pcr033
[55]

Parihar P, Singh R, Singh A, Prasad SM. 2021. Role of oxylipin on Luffa seedlings exposed to NaCl and UV-B stresses: an insight into mechanism. Plant Physiology and Biochemistry 167:691−704

doi: 10.1016/j.plaphy.2021.08.032
[56]

Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, et al. 2016. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. Journal of Experimental Botany 67:1819−26

doi: 10.1093/jxb/erv572
[57]

Ribeiro C, Stitt M, Hotta CT. 2022. How stress affects your budget-stress impacts on starch metabolism. Frontiers in Plant Science 13:774060

doi: 10.3389/fpls.2022.774060
[58]

Dong S, Beckles DM. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology 234–235:80−93

doi: 10.1016/j.jplph.2019.01.007