[1]

Zhao F, Wu W, Wang C, Wang X, Liu H, et al. 2023. Dynamic change of oligopeptides and free amino acids composition in five types of tea with different fermentation degree processed from the same batch of fresh tea (Camelilia Sinensis. L.) leaves. Food Chemistry 404:134608

doi: 10.1016/j.foodchem.2022.134608
[2]

Zhang J, Li M, Zhao T, Cao J, Liu Y, et al. 2022. E'se tea alleviates acetaminophen-induced liver injury by activating the Nrf2 signaling pathway. Food & Function 13:7240−50

doi: 10.1039/D1FO02491D
[3]

Yang M, Sun P, Fan Z, Khan A, Xue Q, et al. 2021. Safety evaluation and hypolipidemic effect of aqueous-ethanol and hot-water extracts from E'se tea in rats. Food and Chemical Toxicology 156:112506

doi: 10.1016/j.fct.2021.112506
[4]

Li N, Xu J, Zhao Y, Zhao M, Liu Z, et al. 2024. The influence of processing methods on polyphenol profiling of tea leaves from the same large-leaf cultivar (Camellia sinensis var. assamica cv. Yunkang-10): nontargeted/targeted polyphenomics and electronic sensory analysis. Food Chemistry 460:140515

doi: 10.1016/j.foodchem.2024.140515
[5]

Fan Z, Wang Y, Yang M, Cao J, Khan A, et al. 2020. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E'se tea extracts and their antioxidant and cytoprotective activities. Food Chemistry 318:126512

doi: 10.1016/j.foodchem.2020.126512
[6]

Lu Y, Sun Y, Ni L, Su W, Liu Y, et al. 2024. Sensory and molecular insights into the bitterness of Wuyi rock tea. Food Bioscience 59:103966

doi: 10.1016/j.fbio.2024.103966
[7]

Lin Y, Wei R, Zheng JJ, Zheng J, Zhang W, et al. 2024. Volatile and non-volatile compounds profiling and their role in sensory and antioxidative attributes of two species of "red snow tea" (Lethariella). Journal of Food Composition and Analysis 133:106422

doi: 10.1016/j.jfca.2024.106422
[8]

Zhao M, Ma Y, Dai LL, Zhang DL, Li JH, et al. 2013. A high-performance liquid chromatographic method for simultaneous determination of 21 free amino acids in tea. Food Analytical Methods 6:69−75

doi: 10.1007/s12161-012-9408-4
[9]

Zheng Z, An Z, Yang Y, Chen J, Liu X, et al. 2023. Metabolic profiling of blueberries (Vaccinium Spp.) to quantitatively and qualitatively assess bruise damage and fruit deterioration. Postharvest Biology and Technology 195:112135

doi: 10.1016/j.postharvbio.2022.112135
[10]

Yin JF, Zhang YN, Du QZ, Chen JX, Yuan HB, et al. 2014. Effect of Ca2+ concentration on the tastes from the main chemicals in green tea infusions. Food Research International 62:941−46

doi: 10.1016/j.foodres.2014.05.016
[11]

Wei R, Su Z, MacKenzie GG. 2023. Chlorogenic acid combined with epigallocatechin-3-gallate mitigates d-galactose-induced gut aging in mice. Food & Function 14:2684−97

doi: 10.1039/D2FO03306B
[12]

Jeszka-Skowron M, Krawczyk M, Zgoła-Grześkowiak A. 2015. Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: influence of citric acid addition on extraction of metals. Journal of Food Composition and Analysis 40:70−77

doi: 10.1016/j.jfca.2014.12.015
[13]

Hu S, Ma WJ, Fu LJ, He XY, Wang GH, et al. 2025. Biochemical component changes of Curcuma longa - black tea triggered by kombucha fermentation using metabolomics analysis. LWT 219:117553

doi: 10.1016/j.lwt.2025.117553
[14]

Liu X, Lin X, Fei T, Liu Z, Wang L. 2025. Chemical components, health-promoting effects and industrial application of a Chinese bitter tea (Kuding tea): a comprehensive review. Food Chemistry 479:143792

doi: 10.1016/j.foodchem.2025.143792
[15]

Peng Q, Huang J, Li S, Jiang H, Xie G. 2025. Analysis of regional flavor quality differences in congou black tea using metabolomics. Food Chemistry 486:144595

doi: 10.1016/j.foodchem.2025.144595
[16]

Liu Z, Ma C, Liu LX, Dong GZ, Wang B, et al. 2024. Comprehensive investigation on non-volatile and volatile flavor compounds in different varieties of rose tea by UPLC-Q-TOF-MS/MS-based metabolomics and GC-IMS, GC-MS. Journal of Food Composition and Analysis 136:106708

doi: 10.1016/j.jfca.2024.106708
[17]

Partyka A, Kostrzewa Susłow E, Dymarska M, Ligocka Z, Smalec B, et al. 2024. Flavone and 3-hydroxyflavone supplementation in cryopreservation medium protects canine sperm against apoptosis and lipid peroxidation. Theriogenology 226:319−27

doi: 10.1016/j.theriogenology.2024.06.025
[18]

Lin L, Li K, Hua Y, Liao S, Chen J, et al. 2024. Dynamic changes of anthocyanins during 'Ziyan' tea wine processing. Food Chemistry: X 24:101799

doi: 10.1016/j.fochx.2024.101799
[19]

Aaqil M, Kamil M, Kamal A, Nawaz T, Peng C, et al. 2024. Metabolomics reveals a differential attitude in phytochemical profile of black tea (Camellia Sinensis Var. assamica) during processing. Food Chemistry: X 24:101899

doi: 10.1016/j.fochx.2024.101899
[20]

Yan Y, Luo X, Fan M, AL-Ansi W, Qian H, et al. 2023. NaCl stress enhances pigment accumulation and synthesis in red rice during the germination stage. Food Bioscience 56:103224

doi: 10.1016/j.fbio.2023.103224
[21]

Zhang X, Lu X, He C, Chen Y, Wang Y, et al. 2025. Characterizing and decoding the dynamic alterations of volatile organic compounds and non-volatile metabolites of dark tea by solid-state fermentation with Penicillium polonicum based on GC–MS, GC-IMS, HPLC, E-nose and E-tongue. Food Research International 209:116279

doi: 10.1016/j.foodres.2025.116279
[22]

Ahmad SS, Garg C, Kour R, Bhat AH, Raja V, et al. 2024. Metabolomic insights and bioactive efficacies of Tragopogon dubius root fractions: antioxidant and antiproliferative assessments. Heliyon 10:e34746

doi: 10.1016/j.heliyon.2024.e34746
[23]

Ye J, Luo Y, Wang Y, Wang Y, Wang T, et al. 2025. Taste characteristics and symbolic metabolites of Rougui tea with different grades in China. Food Chemistry: X 27:102405

doi: 10.1016/j.fochx.2025.102405
[24]

Zhang S, Ee KH, Goh RMV, Huang Y, Pua A, et al. 2025. A two-dimensional liquid chromatography approach for simultaneous separation and quantification of structural and chiral amino acids in oolong tea. Food Chemistry 472:142846

doi: 10.1016/j.foodchem.2025.142846
[25]

Pang GF, Fan CL, Chang QY, Yang F, Cao YZ. 2018. Simultaneous determination of 653 pesticide residues in teas by solid phase extraction (SPE) with gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). In Analysis of Pesticide in Tea, eds Pang GF, Fan CL, Chang QY, Yang F, Cao YZ. Amsterdam: Elsevier. pp. 1–88. doi: 10.1016/B978-0-12-812727-8.00001-8

[26]

Saeed A. 2016. Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. European Journal of Medicinal Chemistry 116:290−317

doi: 10.1016/j.ejmech.2016.03.025
[27]

Islam MA, Park E, Jeong B, Gwak YJ, Kim J, et al. 2022. Validation of vitamin B5 (pantothenic acid) and B6 (pyridoxine, pyridoxal, and pyridoxamine) analyses in seafood. Journal of Food Composition and Analysis 109:104518

doi: 10.1016/j.jfca.2022.104518
[28]

Selvaraj S, Rajkumar P, Kesavan M, Gunasekaran S, Kumaresan S. 2019. Experimental and theoretical analyzes on structural and spectroscopic properties of monomer and dimeric form of (S)-Piperidine-2-Carboxylic acid: an attempt on medicinal plant. Vibrational Spectroscopy 100:30−39

doi: 10.1016/j.vibspec.2018.10.008
[29]

Komaikul J, Kitisripanya T, Likhitwitayawuid K, Sritularak B, Tanaka H, et al. 2019. Improvement of stilbenoid production by 2-hydroxypropyl-β-cyclodextrin in white mulberry (Morus alba L.) callus cultures. Natural Product Research 33:2762−69

doi: 10.1080/14786419.2018.1499643
[30]

Xu L, Yang H, Li C, Liu S, Zhao H, et al. 2023. Composition analysis of free and bound phenolics in chestnut rose (Rosa roxburghii Tratt.) fruit by UHPLC-IM-QTOF and UPLC-QQQ. LWT 185:115125

doi: 10.1016/j.lwt.2023.115125
[31]

Yang J, Huang Y, Yang Z, Zhou C, Hu X. 2018. Identification and quantitative evaluation of major sweet ingredients in sweet tea (Lithocarpus polystachyus Rehd.) based upon location, harvesting time, leaf age. Journal of the Chemical Society of Pakistan 40:158−64

[32]

Omidfar F, Gheybi F, Zareian M, Karimi E. 2023. Polyphenols in food industry, nano-based technology development and biological properties: an overview. eFood 4:e88

doi: 10.1002/efd2.88
[33]

Wei F, Luo L, Zeng L. 2023. Characterization of key sweet taste compounds in Camellia nanchuanica black tea. LWT 182:114858

doi: 10.1016/j.lwt.2023.114858
[34]

Wu L, Huang X, Liu S, Liu J, Guo Y, et al. 2020. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Food Chemistry 310:125941

doi: 10.1016/j.foodchem.2019.125941
[35]

Zhao Y, Yan L, Chen L, Du F, Lin C, et al. 2024. Enhancing the flavor profile of strong-flavored green tea from Sichuan: evaluation and optimization study. LWT 204:116447

doi: 10.1016/j.lwt.2024.116447
[36]

Yu J, Li J, Lin Z, Zhu Y, Feng Z, et al. 2024. Dynamic changes and the effects of key procedures on the characteristic aroma compounds of Lu'an Guapian green tea during the manufacturing process. Food Research International 188:114525

doi: 10.1016/j.foodres.2024.114525
[37]

Tong T, Wang Y, Kang SG, Huang K. 2021. Ectopic odorant receptor responding to flavor compounds: versatile roles in health and disease. Pharmaceutics 13:1314

doi: 10.3390/pharmaceutics13081314
[38]

Fang X, Xu W, Jiang G, Sui M, Xiao J, et al. 2024. Monitoring the dynamic changes in aroma during the whole processing of Qingzhuan tea at an industrial scale: from fresh leaves to finished tea. Food Chemistry 439:137810

doi: 10.1016/j.foodchem.2023.137810
[39]

Maggi L, Carmona M, Zalacain A, Kanakis CD, Anastasaki E, et al. 2010. Changes in saffron volatile profile according to its storage time. Food Research International 43:1329−34

doi: 10.1016/j.foodres.2010.03.025
[40]

Zhang H, Wang J, Zhang D, Zeng L, Liu Y, et al. 2021. Aged fragrance formed during the post-fermentation process of dark tea at an industrial scale. Food Chemistry 342:128175

doi: 10.1016/j.foodchem.2020.128175
[41]

Gao T, Shao S, Hou B, Hong Y, Ren W, et al. 2023. Characteristic volatile components and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China. Beverage Plant Research 3:17

doi: 10.48130/BPR-2023-0017
[42]

Mei S, Ding J, Chen X. 2023. Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC–MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking. Food Research International 168:112760

doi: 10.1016/j.foodres.2023.112760
[43]

Zhu J, Chen Y, Liu X, Sun Z, Zhang J, et al. 2025. Exploring the molecular mechanism of the interaction between characteristic aroma compounds in Longjing tea using a combination of sensory and theoretical perspectives: with a focus on linalool and methyl jasmonate on olfactory receptor of OR52D1. Industrial Crops and Products 224:120314

doi: 10.1016/j.indcrop.2024.120314
[44]

Qi S, Zeng T, Wu P, Sun L, Dong Z, et al. 2024. Widely targeted metabolomic analysis reveals effects of yellowing process time on the flavor of vine tea (Ampelopsis grossedentata). Food Chemistry: X 22:101446

doi: 10.1016/j.fochx.2024.101446
[45]

Zhao R, Yao H, Hou Z, Zhou Q, Zhao M, et al. 2024. Sensomics-assisted analysis unravels the formation of the Fungus Aroma of Fu Brick Tea. Food Chemistry 458:140174

doi: 10.1016/j.foodchem.2024.140174
[46]

Meng X, Wang F, Fu CH, Zeng L, Chen ZH, et al. 2024. Effect of osmanthus hydrolat on the aroma quality and volatile components of osmanthus black tea. Food Chemistry: X 23:101564

doi: 10.1016/j.fochx.2024.101564
[47]

Li J, He SY, Qin XD. 2016. Allelopathic potential and volatile compounds of Manihot esculenta Crantz against weeds. Allelopathy Journal 37:195−206

[48]

Guo X, Ho CT, Schwab W, Wan X. 2021. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chemistry 363:130328

doi: 10.1016/j.foodchem.2021.130328
[49]

Cui J, Wu B, Wang J, Jing T, Jin J, et al. 2024. Effect of storage time on aroma profiles of wuyi rock tea. LWT 203:116367

doi: 10.1016/j.lwt.2024.116367
[50]

Chiang SH, Tsou MF, Chang CY, Chen CW. 2020. Physicochemical characteristics, sensory quality, and antioxidant properties of Paochung tea infusion brewed in cold water. International Journal of Food Properties 23:1611−23

doi: 10.1080/10942912.2020.1820519
[51]

Sheng C, Lu M, Zhang J, Zhao W, Jiang Y, et al. 2024. Metabolomics and electronic-tongue analysis reveal differences in color and taste quality of large-leaf yellow tea under different roasting methods. Food Chemistry: X 23:101721

doi: 10.1016/j.fochx.2024.101721
[52]

Zhou Z, Ou M, Shen W, Jin W, Yang G, et al. 2024. Caffeine weakens the astringency of epigallocatechin gallate by inhibiting its interaction with salivary proteins. Food Chemistry 460:140753

doi: 10.1016/j.foodchem.2024.140753
[53]

Yuan X, Chen X, Chai C, Feng M, Hu Y, et al. 2025. Identifying key contributors to the sweet aftertaste of raw Pu-erh tea through analytical and sensory methods. Food Chemistry 481:144067

doi: 10.1016/j.foodchem.2025.144067
[54]

Wei F, Luo L, Wang X, Luo W, Wu F, et al. 2025. The masking mechanism of catechin to the sweet taste of phloridzin. Food Chemistry 464:141756

doi: 10.1016/j.foodchem.2024.141756
[55]

Deng S, Zhang G, Olayemi Aluko O, Mo Z, Mao J, et al. 2022. Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Research International 157:111262

doi: 10.1016/j.foodres.2022.111262
[56]

Fang S, Huang W, Yang T, Pu L, Ma Y, et al. 2024. Ancient tea plants black tea taste determinants and their changes over manufacturing processes. LWT 193:115750

doi: 10.1016/j.lwt.2024.115750
[57]

Du W, Ma Q, Fang Z, Bi Y, Li D, et al. 2025. Sensomics-based characterization of perceptual interactions between key odorants and polyphenols in Wuzhishan black tea. LWT 221:117600

doi: 10.1016/j.lwt.2025.117600
[58]

Zheng X, Wang L, Yao H, Wang J, An H, et al. 2025. Unraveling the unique profile of Fu brick tea: volatile components, analytical approaches and metabolic mechanisms of key odor-active compounds. Trends in Food Science & Technology 156:104879

doi: 10.1016/j.jpgs.2025.104879