[1]

Chen X, Sun X, Chimbaka IM, Qin N, Xu X, et al. 2021. Transcriptome analysis of ovarian follicles reveals potential pivotal genes associated with increased and decreased rates of chicken egg production. Frontiers in Genetics 12:622751

doi: 10.3389/fgene.2021.622751
[2]

Tian C, Liu L, Ye X, Fu H, Sheng X, et al. 2019. Functional oocytes derived from granulosa cells. Cell Reports 29:4256−4267.e9

doi: 10.1016/j.celrep.2019.11.080
[3]

Kim D, Johnson AL. 2018. Differentiation of the granulosa layer from hen prehierarchal follicles associated with follicle‐stimulating hormone receptor signaling. Molecular reproduction and development 85:729−37

doi: 10.1002/mrd.23042
[4]

Johnson AL, Woods DC. 2009. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. General and Comparative Endocrinology 163:12−17

doi: 10.1016/j.ygcen.2008.11.012
[5]

Xu J, Gao X, Li X, Ye Q, Jebessa E, et al. 2017. Molecular characterization, expression profile of the FSHR gene and its association with egg production traits in Muscovy duck. Journal of Genetics 96:341−51

doi: 10.1007/s12041-017-0783-x
[6]

Wang J, Zhao C, Li J, Feng Y, Gong Y. 2017. Transcriptome analysis of the potential roles of FOXL2 in chicken pre-hierarchical and pre-ovulatory granulosa cells. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 21:56−66

doi: 10.1016/j.cbd.2016.12.003
[7]

Abu-Rekaiba RIA, Razuki WM, Al-Anbari EH. 2021. Polimorphic explore of Esr1, Esr2 and Foxl2 genes and interaction effect of Esri and Foxl2 with productive traits of brown local Iraqi chickens. IOP Conference Series: Earth and Environmental Science 910:012004

doi: 10.1088/1755-1315/910/1/012004
[8]

Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, et al. 2001. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891−99

doi: 10.1210/endo.142.11.8486
[9]

Johnson PA, Dickens MJ, Kent TR, Giles JR. 2005. Expression and function of growth differentiation Factor-9 in an Oviparous species, Gallus domesticus. Biology of Reproduction 72:1095−100

doi: 10.1095/biolreprod.104.036822
[10]

Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, et al. 2002. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biology of Reproduction 67:1777−89

doi: 10.1095/biolreprod.102.007146
[11]

Lassoued N, Benkhlil Z, Woloszyn F, Rejeb A, Aouina M, et al. 2017. FecXBar a novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine Sheep. BMC Genetics 18:1−10

doi: 10.1186/s12863-017-0510-x
[12]

Shimizu K, Nakamura T, Bayasula, Nakanishi N, Kasahara Y, et al. 2019. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. Journal of Assisted Reproduction and Genetics 36:1185−94

doi: 10.1007/s10815-019-01469-y
[13]

Sun X, Zhu H, Zhang C, Ilboudo JPHW, Zhao J, et al. 2023. Transcriptomic analysis of ovarian follicles uncovers the crucial genes relevant to follicle selection and preovulatory hierarchy in hens. Journal of Animal Science 101:skad241

doi: 10.1093/jas/skad241
[14]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[15]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[16]

Sun J, Zhang P, Wang D, Zhu S, Ma X, et al. 2023. Integrative analyses of the mRNA expression profile reveal the involvement of STC1 in chicken folliculogenesis. Journal of Animal Science 101:skad295

doi: 10.1093/jas/skad295
[17]

Chen X, Bai H, Li L, Zhang W, Jiang R, et al. 2012. Follicle characteristics and follicle developmental related Wnt6 polymorphism in Chinese indigenous Wanxi-white goose. Molecular Biology Reports 39:9843−48

doi: 10.1007/s11033-012-1850-2
[18]

Nishio S, Kohno Y, Iwata Y, Arai M, Okumura H, et al. 2014. Glycosylated chicken ZP2 accumulates in the egg coat of immature oocytes and remains localized to the germinal disc region of mature eggs. Biology of Reproduction 91:107,1−10

doi: 10.1095/biolreprod.114.119826
[19]

Wang Y, Chen Q, Liu Z, Guo X, Du Y, et al. 2017. Transcriptome analysis on single small yellow follicles reveals that Wnt4 Is involved in chicken follicle selection. Frontiers in Endocrinology 8:317

doi: 10.3389/fendo.2017.00317
[20]

Zhang J, Duan Z, Wang X, Li F, Chen J, et al. 2021. Screening and validation of candidate genes involved in the regulation of egg yolk deposition in chicken. Poultry Science 100:101077

doi: 10.1016/j.psj.2021.101077
[21]

Zhang T, Chen L, Han K, Zhang X, Zhang G, et al. 2019. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Animal Reproduction Science 208:106114

doi: 10.1016/j.anireprosci.2019.106114
[22]

Shen M, Li T, Feng Y, Wu P, Serrano BR, et al. 2023. Effects of quercetin on granulosa cells from prehierarchical follicles by modulating MAPK signaling pathway in chicken. Poultry Science 102:102736

doi: 10.1016/j.psj.2023.102736
[23]

Ning Z, Deng X, Li L, Feng J, Du X, et al. 2023. miR-128-3p regulates chicken granulosa cell function via 14-3-3β/FoxO and PPAR-γ/LPL signaling pathways. International Journal of Biological Macromolecules 241:124654

doi: 10.1016/j.ijbiomac.2023.124654
[24]

Patton BK, Madadi S, Pangas SA. 2021. Control of ovarian follicle development by TGF-β family signaling. Current Opinion in Endocrine and Metabolic Research 18:102−10

doi: 10.1016/j.coemr.2021.03.001
[25]

Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, et al. 1999. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. The Journal of Clinical Endocrinology & Metabolism 84:2744−50

doi: 10.1210/jcem.84.8.5921
[26]

Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. 2001. Bone morphogenetic protein-15 inhibits Follicle-stimulating Hormone (FSH) action by suppressing FSH receptor expression. Journal of Biological Chemistry 276:11387−92

doi: 10.1074/jbc.M010043200
[27]

Otsuka F, Yao Z, Lee TH, Yamamoto S, Erickson GF, et al. 2000. Bone morphogenetic protein-15: identification of target cells and biological functions. The Journal of Biological Chemistry 275:39523−28

doi: 10.1074/jbc.M007428200
[28]

Knight PG, Glister C. 2006. TGF-β superfamily members and ovarian follicle development. Reproduction 132:191−206

doi: 10.1530/rep.1.01074
[29]

Massagué J. 2003. TGF-β signal transduction. Annual Review of Biochemistry 67:753−91

doi: 10.1146/annurev.biochem.67.1.753
[30]

Haas CS, Oliveira FC, Rovani MT, Ferst JG, Vargas SF Jr., et al. 2022. Bone morphogenetic protein 15 intrafollicular injection inhibits ovulation in cattle. Theriogenology 182:148−54

doi: 10.1016/j.theriogenology.2022.02.010
[31]

Yan YL, Desvignes T, Bremiller R, Wilson C, Dillon D, et al. 2017. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Developmental Dynamics 246:925−45

doi: 10.1002/dvdy.24579
[32]

Han H, Lei Q, Zhou Y, Gao J, Liu W, et al. 2015. Association between BMP15 gene polymorphism and reproduction traits and its tissues expression characteristics in chicken. PLoS One 10:e0143298

doi: 10.1371/journal.pone.0143298
[33]

Moore RK, Otsuka F, Shimasaki S. 2003. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. Journal of Biological Chemistry 278:304−10

doi: 10.1074/jbc.M207362200
[34]

Li Q, Rajanahally S, Edson MA, Matzuk MM. 2009. Stable expression and characterization of N-terminal tagged recombinant human bone morphogenetic protein 15. Molecular Human Reproduction 15:779−88

doi: 10.1093/molehr/gap062
[35]

Liu C, Yuan B, Chen H, Xu M, Sun X, et al. 2018. Effects of miR-375-BMPR2 as a key factor downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 signaling pathways. Cellular Physiology and Biochemistry 46:213−25

doi: 10.1159/000488424
[36]

Elis S, Dupont J, Couty I, Persani L, Govoroun M, et al. 2007. Expression and biological effects of bone morphogenetic protein-15 in the hen ovary. Journal of Endocrinology 194:485−97

doi: 10.1677/JOE-07-0143
[37]

Bradford STJ, Ranghini EJ, Grimley E, Lee PH, Dressler GR. 2019. High-throughput screens for agonists of bone morphogenetic protein (BMP) signaling identify potent benzoxazole compounds. Journal of Biological Chemistry 294:3125−36

doi: 10.1074/jbc.RA118.006817
[38]

Ma X, Yi H. 2022. BMP15 regulates FSHR through TGF-β receptor II and SMAD4 signaling in prepubertal ovary of Rongchang pigs. Research in Veterinary Science 143:66−73

doi: 10.1016/j.rvsc.2021.12.013
[39]

Paulini F, Melo EO. 2021. Effects of growth and differentiation factor 9 and bone morphogenetic protein 15 overexpression on the steroidogenic metabolism in bovine granulosa cells in vitro. Reproduction in Domestic Animals 56:837−47

doi: 10.1111/rda.13923
[40]

Lehmann TP, Biernacka-Lukanty JM, Trzeciak WH, Li JY. 2005. Steroidogenic factor 1 gene transcription is inhibited by transforming growth factor β. Endocrine Research 31:71−79

doi: 10.1080/07435800500229110
[41]

Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. 2014. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Human Reproduction Update 20:869−83

doi: 10.1093/humupd/dmu036
[42]

Lee EB, Chakravarthi VP, Wolfe MW, Karim Rumi MA. 2021. ERβ regulation of gonadotropin responses during folliculogenesis. International Journal of Molecular Sciences 22:10348

doi: 10.3390/ijms221910348
[43]

Michalovic L, Currin L, Gutierrez K, Bellefleur AM, Glanzner WG, et al. 2018. Granulosa cells of prepubertal cattle respond to gonadotropin signaling and upregulate genes that promote follicular growth and prevent cell apoptosis. Molecular Reproduction and Development 85:909−20

doi: 10.1002/mrd.23066
[44]

Makrigiannakis A, Coukos G, Christofidou‐Solomidou M, Montas S, Coutifaris C. 2000. Progesterone is an autocrine/paracrine regulator of human granulosa cell survival in vitro. Annals of the New York Academy of Sciences 900:16−25

doi: 10.1111/j.1749-6632.2000.tb06212.x
[45]

Otsuka F, Moore RK, Shimasaki S. 2001. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. Journal of Biological Chemistry 276:32889−95

doi: 10.1074/jbc.M103212200
[46]

Fauser BCJM, Van Heusden AM. 1997. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocrine Reviews 18:71−106

doi: 10.1210/edrv.18.1.029