[1]

Samananda Singh L, Singh WS. 2024. Multifaceted therapeutic potential of corosolic acid: a novel bioactive compound. Obesity Medicine 49:100548

doi: 10.1016/j.obmed.2024.100548
[2]

Jin M, Li J, Zheng L, Huang M, Wu Y, et al. 2024. Corosolic acid delivered by exosomes from Eriobotrya japonica decreased pancreatic cancer cell proliferation and invasion by inducing SAT1-mediated ferroptosis. International Immunopharmacology 132:111939

doi: 10.1016/j.intimp.2024.111939
[3]

Phakeovilay C, Bourgeade-Delmas S, Perio P, Valentin A, Chassagne F, et al. 2019. Antileishmanial compounds isolated from Psidium guajava L. using a metabolomic approach. Molecules 24(24):4536

doi: 10.3390/molecules24244536
[4]

Sharma Y, Velamuri R, Fagan J, Schaefer J. 2020. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 25(20):4599

doi: 10.3390/molecules25204599
[5]

Ladurner A, Zehl M, Grienke U, Hofstadler C, Faur N, et al. 2017. Allspice and clove as source of triterpene acids activating the g Protein-Coupled bile acid receptor TGR5. Frontiers in Pharmacology 8:468

doi: 10.3389/fphar.2017.00468
[6]

Xue L, Carreiro B, Mia MS, Paetau-Robinson I, Khoo C, et al. 2024. Pentacyclic triterpenoid content in cranberry raw materials and products. Foods 13(19):3136

doi: 10.3390/foods13193136
[7]

Hu F, Liao X, Guo Y, Yamaki S, Li X, et al. 2020. Fast determination of isomeric triterpenic acids in Osmanthus fragrans (Thunb.) Lour. fruits by UHPLC coupled with triple quadrupole mass spectrometry. Food Chemistry 322:126781

doi: 10.1016/j.foodchem.2020.126781
[8]

Olszewska M. 2008. Optimization and validation of an HPLC-UV method for analysis of corosolic, oleanolic, and ursolic acids in plant material: Application to Prunus serotina Ehrh. Acta Chromatographica 20(4):643−59

doi: 10.1556/AChrom.20.2008.4.10
[9]

Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, et al. 2021. Corosolic acid and its structural analogs: a systematic review of their biological activities and underlying mechanism of action. Phytomedicine 91:153696

doi: 10.1016/j.phymed.2021.153696
[10]

Mioc M, Milan A, Malița D, Mioc A, Prodea A, et al. 2022. Recent advances regarding the molecular mechanisms of triterpenic acids: a review (Part I). International Journal of Molecular Sciences 23(14):7740

doi: 10.3390/ijms23147740
[11]

Mioc M, Prodea A, Racoviceanu R, Mioc A, Ghiulai R, et al. 2022. Recent advances regarding the molecular mechanisms of triterpenic acids: a review (Part II). International Journal of Molecular Sciences 23(16):8896

doi: 10.3390/ijms23168896
[12]

Ni M, Pan J, Hu X, Gong D, Zhang G. 2019. Inhibitory effect of corosolic acid on α-glucosidase: kinetics, interaction mechanism, and molecular simulation. Journal of the Science of Food and Agriculture 99(13):5881−89

doi: 10.1002/jsfa.9862
[13]

Zhang BW, Xing Y, Wen C, Yu XX, Sun WL, et al. 2017. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: structure-activity relationships and the synergism with acarbose. Bioorganic & Medicinal Chemistry Letters 27(22):5065−70

doi: 10.1016/j.bmcl.2017.09.027
[14]

Shi L, Zhang W, Zhou YY, Zhang YN, Li JY, et al. 2008. Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation. European Journal of Pharmacology 584(1):21−29

doi: 10.1016/j.ejphar.2008.01.020
[15]

Yang J, Leng J, Li JJ, Tang JF, Li Y, et al. 2016. Corosolic acid inhibits adipose tissue inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice. Phytomedicine 23(2):181−90

doi: 10.1016/j.phymed.2015.12.018
[16]

Zhang C, Gao L, Zhang Y, Jin X, Wang M, et al. 2024. Corosolic acid inhibits EMT in lung cancer cells by promoting YAP-mediated ferroptosis. Phytomedicine 135:156110

doi: 10.1016/j.phymed.2024.156110
[17]

Peng Y, Li N, Tang F, Qian C, Jia T, et al. 2022. Corosolic acid sensitizes ferroptosis by upregulating HERPUD1 in liver cancer cells. Cell Death Discovery 8(1):376

doi: 10.1038/s41420-022-01169-0
[18]

Lee MS, Cha EY, Thuong PT, Kim JY, Ahn MS, et al. 2010. Down-Regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell cycle arrest and apoptosis in NCI-N87 human gastric cancer cells. Biological & Pharmaceutical Bulletin 33(6):931−37

[19]

Tang F, Peng Y, Liu J, Gao W, Xu Y. 2023. Integrating network pharmacology and experimental models to examine the mechanisms of corosolic acid in preventing hepatocellular carcinoma progression through activation PERK-eIF2a-ATF4 signaling. Naunyn-Schmiedeberg's Archives of Pharmacology 396(12):3671−82

doi: 10.1007/s00210-023-02560-z
[20]

Wu TK, Hung TW, Chen YS, Pan YR, Hsieh YH, et al. 2024. Corosolic acid inhibits metastatic response of human renal cell carcinoma cells by modulating ERK/MMP2 signaling. Environmental Toxicology 39(2):857−68

doi: 10.1002/tox.23999
[21]

Pundalik S, Hanumappa KR, Giresha AS, Urs D, Rajashekarappa S, et al. 2022. Corosolic acid inhibits secretory phospholipase A2IIa as an Anti-Inflammatory function and exhibits anti-tumor activity in ehrlich ascites carcinoma bearing mice. Journal of Inflammation Research 15:6905−21

doi: 10.2147/JIR.S383441
[22]

Aguirre MC, Delporte C, Backhouse N, Erazo S, Letelier ME, et al. 2006. Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorganic & Medicinal Chemistry 14(16):5673−77

[23]

Garo E, Eldridge GR, Goering MG, DeLancey Pulcini E, Hamilton MA, et al. 2007. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrobial Agents and Chemotherapy 51(5):1813−17

doi: 10.1128/AAC.01037-06
[24]

Zhou Y, Lv X, Chen M, Guo Y, Ding R, et al. 2020. Characterization of corosolic acid as a KPC-2 inhibitor that increases the susceptibility of KPC-2-positive bacteria to carbapenems. Frontiers in Pharmacology 11:1047

doi: 10.3389/fphar.2020.01047
[25]

Romsuk J, Srisawat P, Robertlee J, Yasumoto S, Miura K, et al. 2024. Heterologous production of corosolic acid, a phyto-insulin, in agroinfiltrated Nicotiana benthamiana leaves. Plant Biotechnology 41(3):277−88

doi: 10.5511/plantbiotechnology.24.0420a
[26]

Furtado NJC, Pirson L, Edelberg H, Miranda LM, Loira-Pastoriza C, et al. 2017. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules 22(3):400

doi: 10.3390/molecules22030400
[27]

Spivak AY, Kuzmina US, Nedopekina DA, Dubinin MV, Khalitova RR, et al. 2024. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids 209:109471

doi: 10.1016/j.steroids.2024.109471
[28]

Feng X, Lu YH, Liu Z, Li DP, Zou YX, et al. 2017. Microbial transformation of the anti-diabetic agent corosolic acid by Cunninghamella echinulata. Journal of Asian Natural Products Research 19(7):645−50

doi: 10.1080/10286020.2016.1187140
[29]

Li X, Widjaya AS, Liu J, Liu X, Long Z, et al. 2020. Cell-penetrating corosolic acid liposome as a functional carrier for delivering chemotherapeutic drugs. Acta Biomaterialia 106:301−13

doi: 10.1016/j.actbio.2020.02.013
[30]

Li H, Tan X, Qin L, Gatasheh MK, Zhang L, et al. 2024. Preparation, process optimisation, stability and bacteriostatic assessment of composite nanoemulsion containing corosolic acid. Heliyon 10(19):e38283

doi: 10.1016/j.heliyon.2024.e38283
[31]

Zhao J, Zhou H, An Y, Shen K, Yu L. 2021. Biological effects of corosolic acid as an anti-inflammatory, anti-metabolic syndrome and anti-neoplasic natural compound. Oncology Letters 21(2):84

[32]

Sivakumar G, Vail DR, Nair V, Medina Bolivar F, Lay JO. 2009. Plant-based corosolic acid: Future anti-diabetic drug? Biotechnology Journal 4(12):1704−11

doi: 10.1002/biot.200900207
[33]

Rangel-Galván M, Pacheco-Hernández Y, Lozoya-Gloria E, Villa-Ruano N. 2024. Dietary natural products as inhibitors of α-amylase and α-glucosidase: an updated review of ligand-receptor correlations validated by docking studies. Food Bioscience 62:105456

doi: 10.1016/j.fbio.2024.105456
[34]

Khalid H, Butt MH, Ur Rehman Aziz A, Ahmad I, Iqbal F, et al. 2024. Phytobioinformatics screening of ayurvedic plants for potential α-glucosidase inhibitors in diabetes management. Current Plant Biology 40:100404

doi: 10.1016/j.cpb.2024.100404
[35]

Aydin S, Tekinalp SG, Tuzcu B, Cam F, Sevik MO, et al. 2025. The role of AMP-activated protein kinase activators on energy balance and cellular metabolism in type 2 diabetes mellitus. Obesity Medicine 53:100577

doi: 10.1016/j.obmed.2024.100577
[36]

Kwon EB, Kang MJ, Ryu HW, Lee S, Lee JW, et al. 2020. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. Phytomedicine 68:153178

doi: 10.1016/j.phymed.2020.153178
[37]

Xu S, Yu W, Zhang X, Wang W, Wang X. 2022. The regulatory role of Gnao1 protein in diabetic encephalopathy in KK-Ay mice and streptozotocin-induced diabetic rats. Brain Research 1792:148012

doi: 10.1016/j.brainres.2022.148012
[38]

Miura T, Ueda N, Yamada K, Fukushima M, Ishida T, et al. 2006. Antidiabetic effects of corosolic acid in KK-Ay diabetic mice. Biological & Pharmaceutical Bulletin 29(3):585−87

[39]

Hibi M, Matsui Y, Niwa S, Oishi S, Yanagimoto A, et al. 2022. Corosolic acid improves glucose and insulin responses in middle-aged men with impaired fasting glucose: A randomized, double-blinded, placebo-controlled crossover trial. Journal of Functional Foods 97:105256

doi: 10.1016/j.jff.2022.105256
[40]

Zhang W, Men X, Lei P. 2014. Review on anti-tumor effect of triterpene acid compounds. Journal of Cancer Research and Therapeutics 10:14−19

doi: 10.4103/0973-1482.139746
[41]

Bahadori MB, Vandghanooni S, Dinparast L, Eskandani M, Ayatollahi SA, et al. 2019. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoterapia 134:493−500

doi: 10.1016/j.fitote.2019.03.013
[42]

Woo SM, Seo SU, Min KJ, Im SS, Nam JO, et al. 2018. Corosolic acid induces Non-Apoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma caki cells. International Journal of Molecular Sciences 19(5):1309

doi: 10.3390/ijms19051309
[43]

Tu S, Zou Y, Yang M, Zhou X, Zheng X, et al. 2025. Ferroptosis in hepatocellular carcinoma: mechanisms and therapeutic implications. Biomedicine & Pharmacotherapy 182:117769

doi: 10.1016/j.biopha.2024.117769
[44]

Li B, Li Y, Wang Q, Li F, Li F. 2019. Corosolic acid impairs human lung adenocarcinoma A549 cells proliferation by inhibiting cell migration. Oncology Letters 17(6):5747−53

doi: 10.3892/ol.2019.10262
[45]

Ku CY, Wang YR, Lin HY, Lu SC, Lin JY. 2015. Corosolic acid inhibits hepatocellular carcinoma cell migration by targeting the VEGFR2/Src/FAK pathway. PLoS One 10(5):e126725

doi: 10.1371/journal.pone.0126725
[46]

Zhang C, Niu Y, Wang Z, Xu X, Li Y, et al. 2021. Corosolic acid inhibits cancer progression by decreasing the level of CDK19-mediated O-GlcNAcylation in liver cancer cells. Cell Death & Disease 12(10):811−89

doi: 10.1038/s41419-021-04164-y
[47]

Park JB, Lee JS, Lee MS, Cha EY, Kim S, et al. 2018. Corosolic acid reduces 5-FU chemoresistance in human gastric cancer cells by activating AMPK. Molecular Medicine Reports 18(3):2880−88

[48]

Chen J, Kang J, Yuan S, O Connell P, Zhang Z, et al. 2024. Exploring the mechanisms of traditional chinese herbal therapy in gastric cancer: A comprehensive network pharmacology study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals 17(4):414

doi: 10.3390/ph17040414
[49]

Kim JH, Kim YH, Song GY, Kim DE, Jeong YJ, et al. 2014. Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β-catenin degradation. Food and Chemical Toxicology 67:87−95

doi: 10.1016/j.fct.2014.02.019
[50]

Han S, Lim SL, Kim H, Choi H, Lee MY, et al. 2024. Ethyl acetate fraction of Osmanthus fragrans var. Aurantiacus and its triterpenoids suppress proliferation and survival of colorectal cancer cells by inhibiting NF-κB and COX2. Journal of Ethnopharmacology 319:117362

doi: 10.1016/j.jep.2023.117362
[51]

Yoo KH, Park JH, Lee DY, Hwang-Bo J, Baek NI, et al. 2015. Corosolic acid exhibits anti-angiogenic and anti-lymphangiogenic effects on in vitro endothelial cells and on an in vivo CT-26 colon carcinoma animal model. Phytotherapy Research 29(5):714−23

doi: 10.1002/ptr.5306
[52]

Luo X, Ye Z, Xu C, Chen H, Dai S, et al. 2024. Corosolic acid enhances oxidative stress-induced apoptosis and senescence in pancreatic cancer cells by inhibiting the JAK2/STAT3 pathway. Molecular Biology Reports 51(1):176

doi: 10.1007/s11033-023-09105-w
[53]

Jasim SA, Khalaf OZ, Alshahrani SH, Hachem K, Ziyadullaev S, et al. 2023. An in vitro investigation of the apoptosis-inducing activity of corosolic acid in breast cancer cells. Iranian Journal of Basic Medical Sciences 26(4):453−60

[54]

Cui A, Li X, Ma X, Song Z, Wang X, et al. 2023. Quantitative transcriptomic and proteomic analysis reveals corosolic acid inhibiting bladder cancer via suppressing cell cycle and inducing mitophagy in vitro and in vivo. Toxicology and Applied Pharmacology 480:116749

doi: 10.1016/j.taap.2023.116749
[55]

Fujiwara Y, Takaishi K, Nakao J, Ikeda T, Katabuchi H, et al. 2013. Corosolic acid enhances the antitumor effects of chemotherapy on epithelial ovarian cancer by inhibiting signal transducer and activator of transcription 3 signaling. Oncology Letters 6(6):1619−23

doi: 10.3892/ol.2013.1591
[56]

Chen JL, Lai CY, Ying TH, Lin CW, Wang PH, et al. 2021. Modulating the ERK1/2–MMP1 axis through corosolic acid inhibits metastasis of human oral squamous cell carcinoma cells. International Journal of Molecular Sciences 22(16):8641

doi: 10.3390/ijms22168641
[57]

Cai X, Zhang H, Tong D, Tan Z, Han D, et al. 2011. Corosolic acid triggers mitochondria and caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells. Phytotherapy Research 25(9):1354−61

doi: 10.1002/ptr.3422
[58]

Tang FF, Liu L, Tian XT, Li N, Peng YX, et al. 2023. Network pharmacological analysis of corosolic acid reveals P4HA2 inhibits hepatocellular carcinoma progression. BMC Complementary Medicine and Therapies 23:171

doi: 10.1186/s12906-023-04008-6
[59]

Lee MS, Lee CM, Cha EY, Thuong PT, Bae K, et al. 2010. Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis. Phytotherapy Research 24(12):1857−61

doi: 10.1002/ptr.3210
[60]

Lee HS, Park JB, Lee MS, Cha EY, Kim JY, et al. 2015. Corosolic acid enhances 5-fluorouracil-induced apoptosis against SNU-620 human gastric carcinoma cells by inhibition of mammalian target of rapamycin. Molecular Medicine Reports 12(3):4782−88

doi: 10.3892/mmr.2015.3982
[61]

Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. 2019. Ursolic acid: an overview on its cytotoxic activities against breast and colorectal cancer cells. Journal of Integrative Medicine 17(3):155−60

doi: 10.1016/j.joim.2019.03.003
[62]

Hudlikar RR, Sargsyan D, Wu R, Su S, Zheng M, et al. 2020. Triterpenoid corosolic acid modulates global CpG methylation and transcriptome of tumor promotor TPA induced mouse epidermal JB6 P+ cells. Chemico-Biological Interactions 321:109025

doi: 10.1016/j.cbi.2020.109025
[63]

Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. 2023. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. Phytomedicine 110:154631

doi: 10.1016/j.phymed.2022.154631
[64]

Xu YQ, Zhang JH, Yang XS. 2016. Corosolic acid induces potent anti-cancer effects in CaSki cervical cancer cells through the induction of apoptosis, cell cycle arrest and PI3K/Akt signalling pathway. Bangladesh Journal of Pharmacology 11(2):453

doi: 10.3329/bjp.v11i2.26793
[65]

Li XQ, Tian W, Liu XX, Zhang K, Huo JC, et al. 2016. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Scientific Reports 6:26854

doi: 10.1038/srep26854
[66]

Zhang J, Zhao Y, Yan L, Tan M, Jin Y, et al. 2024. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 27(8):110448

doi: 10.1016/j.isci.2024.110448
[67]

Alkholifi FK, Devi S, Yusufoglu HS, Alam A. 2023. The cardioprotective effect of corosolic acid in the diabetic rats: A possible mechanism of the PPAR-γ pathway. Molecules 28(3):929

doi: 10.3390/molecules28030929
[68]

Wang ZP, Che Y, Zhou H, Meng YY, Wu HM, et al. 2020. Corosolic acid attenuates cardiac fibrosis following myocardial infarction in mice. International Journal of Molecular Medicine 45(5):1425−35

doi: 10.3892/ijmm.2020.4531
[69]

Che Y, Wang Z, Yuan Y, Zhou H, Wu H, et al. 2022. By restoring autophagic flux and improving mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biology and Toxicology 38(3):451−67

doi: 10.1007/s10565-021-09619-8
[70]

Luna-Vázquez FJ, Ibarra-Alvarado C, Del Rayo Camacho-Corona M, Rojas-Molina A, Rojas-Molina JI, et al. 2018. Vasodilator activity of compounds isolated from plants used in mexican traditional medicine. Molecules 23(6):1474

doi: 10.3390/molecules23061474
[71]

Yamamura A, Fujiwara M, Kawade A, Amano T, Hossain A, et al. 2024. Corosolic acid attenuates platelet-derived growth factor signaling in macrophages and smooth muscle cells of pulmonary arterial hypertension. European Journal of Pharmacology 973:176564

doi: 10.1016/j.ejphar.2024.176564
[72]

Sun Q, He M, Zhang M, Zeng S, Chen L, et al. 2020. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 147:104735

doi: 10.1016/j.fitote.2020.104735
[73]

Han H, Chen M, Li Z, Zhou S, Wu Y, et al. 2022. Corosolic acid protects rat chondrocytes against IL-1β-Induced ECM degradation by activating autophagy via PI3K/AKT/mTOR pathway and ameliorates rat osteoarthritis. Drug Design, Development and Therapy 16:2627−37

doi: 10.2147/DDDT.S365279
[74]

Peng M, Qiang L, Xu Y, Li C, Li T, et al. 2019. Inhibition of JNK and activation of the AMPK-Nrf2 axis by corosolic acid suppress osteolysis and oxidative stress. Nitric Oxide 82:12−24

doi: 10.1016/j.niox.2018.11.002
[75]

Hong G, Zhou L, Han X, Sun P, Chen Z, et al. 2020. Asiatic acid inhibits OVX-induced osteoporosis and osteoclastogenesis via regulating RANKL-mediated NF-κb and Nfatc1 signaling pathways. Frontiers in Pharmacology 11:331

doi: 10.3389/fphar.2020.00331
[76]

Shen H, Wang J, Ao J, Ye L, Shi Y, et al. 2023. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. Food Bioscience 51:102341

doi: 10.1016/j.fbio.2022.102341
[77]

Yamaguchi Y, Yamada K, Yoshikawa N, Nakamura K, Haginaka J, et al. 2006. Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sciences 79(26):2474−79

doi: 10.1016/j.lfs.2006.08.007
[78]

Zong W, Zhao G. 2007. Corosolic acid isolation from the leaves of Eriobotrta ja- ponica showing the effects on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Asia Pacific Journal of Clinical Nutrition 6(Suppl1):346−52

[79]

Guo X, Cui R, Zhao J, Mo R, Peng L, et al. 2016. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy. European Journal of Pharmacology 791:578−88

doi: 10.1016/j.ejphar.2016.09.031
[80]

Fontanay S, Grare M, Mayer J, Finance C, Duval RE. 2008. Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. Journal of Ethnopharmacology 120(2):272−76

doi: 10.1016/j.jep.2008.09.001
[81]

Sycz Z, Tichaczek-Goska D, Wojnicz D. 2022. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes—asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals. Biomolecules 12(1):98

doi: 10.3390/biom12010098
[82]

Yum SJ, Kim SM, Yu YC, Jeong HG. 2017. Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid. Korean Society of Food Science and Technology 49(2):146−50

[83]

Sinelius S, Lady J, Yunardy M, Tjoa E, Nurcahyanti ADR. 2023. Antibacterial activity of Lagerstreomia speciosa and its active compound, corosolic acid, enhances cefotaxime inhibitory activity against Staphylococcus aureus. Journal of Applied Microbiology 134(8):d171

doi: 10.1093/jambio/lxad171
[84]

Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk L, et al. 2010. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie van Leeuwenhoek 97(1):61−68

doi: 10.1007/s10482-009-9388-6
[85]

Kim J, Park S, Shin YK, Kang H, Kim KY. 2018. In vitro antibacterial activity of macelignan and corosolic acid against the bacterial bee pathogens Paenibacillus larvae and Melissococcus plutonius. Acta Veterinaria Brno 87(3):277−84

doi: 10.2754/avb201887030277
[86]

Shin YK, Kim KY. 2016. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway. Brazilian Journal of Medical and Biological Research [Revista Brasileira de Pesquisas Medicas e Biologicas] 49(7):e5313

doi: 10.1590/1414-431X20165313
[87]

Zhao WB, Zhao ZM, Ma Y, Li AP, Zhang ZJ, et al. 2022. Antifungal activity and preliminary mechanism of pristimerin against Sclerotinia sclerotiorum. Industrial Crops and Products 185:115124

doi: 10.1016/j.indcrop.2022.115124
[88]

Zhao HY, Zhu HY, Tang Q, Lin Q, Hao YK, et al. 2024. Anti-inflammatory and antiviral activities of compounds from the fruit of Pouteria caimito. Cogent Food & Agriculture 10:1

doi: 10.1080/23311932.2023.2298023
[89]

Zhou JF, Zhang MR, Wang Q, Li MZ, Bai JS, et al. 2024. Two novel compounds inhibit Flavivirus infection in vitro and in vivo by targeting lipid metabolism. Journal of Virology 98(9):e0063524

doi: 10.1128/jvi.00635-24
[90]

Yang YH, Dai SY, Deng FH, Peng LH, Li C, et al. 2022. Recent advances in medicinal chemistry of oleanolic acid derivatives. Phytochemistry 203:113397

doi: 10.1016/j.phytochem.2022.113397
[91]

Chen L, Gong J, Yong X, Li Y, Wang S. 2024. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Advances 14(1):6557−97

[92]

Farina C, Pinza M, Pifferi G. 1998. Synthesis and anti-ulcer activity of new derivatives of glycyrrhetic, oleanolic and ursolic acids. Il Farmaco 53(1):22−32

doi: 10.1016/S0014-827X(97)00013-X
[93]

Yan R, Liu L, Huang X, Quan ZS, Shen QK, et al. 2024. Bioactivities and structure-activity relationships of maslinic acid derivatives: a review. Chemistry & Biodiversity 21(2):e202301327

doi: 10.1002/cbdv.202301327
[94]

Hussain H, Ali I, Wang D, Hakkim FL, Westermann B, et al. 2021. Glycyrrhetinic acid: a promising scaffold for the discovery of anticancer agents. Expert Opinion on Drug Discovery 16(12):1497−516

doi: 10.1080/17460441.2021.1956901
[95]

Lv J, Sharma A, Zhang T, Wu Y, Ding X. 2018. Pharmacological review on asiatic acid and its derivatives: A potential compound. SLAS Technology 23(2):111−27

doi: 10.1177/2472630317751840
[96]

Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, et a. 2025. Recent progress on triterpenoid derivatives and their anticancer potential. Phytochemistry 229:114257

doi: 10.1016/j.phytochem.2024.114257
[97]

Yang H, Deng M, Jia H, Zhang K, Liu Y, et al. 2024. A review of structural modification and biological activities of oleanolic acid. Chinese Journal of Natural Medicines 22(1):15−30

doi: 10.1016/S1875-5364(24)60559-5
[98]

Huang J, Zang X, Yang W, Yin X, Huang J, et al. 2021. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro. Bioorganic Chemistry 115:105212

doi: 10.1016/j.bioorg.2021.105212
[99]

Liu X, Zang X, Yin X, Yang W, Huang J, et al. 2020. Semi-synthesis of C28-modified triterpene acid derivatives from maslinic acid or corosolic acid as potential α-glucosidase inhibitors. Bioorganic Chemistry 97:103694

doi: 10.1016/j.bioorg.2020.103694
[100]

Heise NV, Csuk R, Mueller T. 2024. (Iso)quinoline amides derived from corosolic acid exhibit high cytotoxicity, and the potential for overcoming drug resistance in human cancer cells. European Journal of Medicinal Chemistry Reports 12:100198

doi: 10.1016/j.ejmcr.2024.100198
[101]

Xu J, Nie X, Hong Y, Jiang Y, Wu G, et al. 2016. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase. Carbohydrate Research 424:42−53

doi: 10.1016/j.carres.2016.02.009
[102]

Kumari H, Ganjoo A, Shafeeq H, Ayoub N, Babu V, et al. 2024. Microbial transformation of some phytochemicals into value-added products: A review. Fitoterapia 178:106149

doi: 10.1016/j.fitote.2024.106149
[103]

Abdel Bar FM, Elekhnawy E, Salkini AA, Soliman AF. 2024. Enhancement of antibacterial and antibiofilm properties of proximadiol through microbial transformation by Rhizopus oryzae. South African Journal of Botany 172:236−41

doi: 10.1016/j.sajb.2024.07.035
[104]

Li DP, Feng X, Chu ZY, Guo FF, Zhang ZS. 2013. Microbial transformation of corosolic acid by Fusarium equiseti and Gliocladium catenulatum. Journal of Asian Natural Products Research 15(7):789−808

doi: 10.1080/10286020.2012.745516
[105]

Xu SH, Zhang C, Wang WW, Yu BY, Zhang J. 2017. Site-selective biotransformation of ursane triterpenes by Streptomyces griseus ATCC 13273. RSC Advances 7(34):20754−59

doi: 10.1039/C7RA01811H
[106]

Kumar P, Bhadauria AS, Singh AK, Saha S. 2018. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences 209:24−33

doi: 10.1016/j.lfs.2018.07.056
[107]

Cui N, Li MJ, Wang YW, Meng Q, Shi YJ, et al. 2024. Boswellic acids: a review on its pharmacological properties, molecular mechanism and bioavailability. Traditional Medicine Research 9(10):60

doi: 10.53388/TMR20240128002
[108]

Fernandes S, Vieira M, Prudêncio C, Ferraz R. 2024. Betulinic acid for glioblastoma treatment: Reality, challenges and perspectives. International Journal of Molecular Sciences 25(4):2108

doi: 10.3390/ijms25042108
[109]

Rehman Sheikh A, Wu-Chen RA, Matloob A, Mahmood MH, Javed M. 2024. Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices. Food Innovation and Advances 3(3):305−19

doi: 10.48130/fia-0024-0028
[110]

Malík M, Velechovský J, Tlustoš P. 2021. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia 151:104845

doi: 10.1016/j.fitote.2021.104845
[111]

Bildziukevich U, Özdemir Z, Wimmer Z. 2019. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules 24(19):3546

doi: 10.3390/molecules24193546
[112]

Bag BG, Garai C, Ghorai S. 2019. Vesicular self-assembly of a natural ursane-type dihydroxy-triterpenoid corosolic acid. RSC Advances 9(27):15190−95

doi: 10.1039/C9RA02801C
[113]

Bao H, Sun W, Sun H, Jin Y, Gong X, et al. 2022. Liquid chromatographic study of two structural isomeric pentacyclic triterpenes on reversed-phase stationary phase with hydroxypropyl-β-cyclodextrin as mobile phase additive. Journal of Pharmaceutical and Biomedical Analysis 207:114420

doi: 10.1016/j.jpba.2021.114420
[114]

Liu S, Liu Y, Li Q, Song Y, Zhang L, et al. 2024. Oleanolic acid nanoparticles-stabilized W/O pickering emulsions: fabrication, characterization, and delivery application. Food Chemistry 444:138598

doi: 10.1016/j.foodchem.2024.138598
[115]

Liu Y, Xia H, Guo S, Lu X, Zeng C. 2022. Development and characterization of a novel naturally occurring pentacyclic triterpene self-stabilized pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 634:127908

doi: 10.1016/j.colsurfa.2021.127908
[116]

Liu Y, Zhang R, Yang Y, Liu X, Jiang Y. 2025. Corosolic acid derivative-based lipid nanoparticles for efficient RNA delivery. Journal of Controlled Release 378:1−17

doi: 10.1016/j.jconrel.2024.11.073
[117]

Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, et al. 2022. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. Journal of Controlled Release 344:62−79

doi: 10.1016/j.jconrel.2022.02.020