[1]

National Pharmacopoeia Committee. 2020. Pharmacopoeia of the People's Republic of China (Part I). Beijing: China Medical Science Press. pp.178−79

[2]

Editorial Committee of Flora of China CAoS. 1997. Flora of China: Vol. 43. Beijing: Science Press

[3]

Editorial Committee of Flora of China CAoS. 2008. Flora of China: Vol. 11. Beijing: Science Press

[4]

Wang Z, Xiong Y, Peng Y, Zhang X, Li S, et al. 2023. Natural product evodiamine-inspired medicinal chemistry: Anticancer activity, structural optimization and structure-activity relationship. European Journal of Medicinal Chemistry 247:115031

doi: 10.1016/j.ejmech.2022.115031
[5]

Liao Y, Liu Y, Xia X, Shao Z, Huang C, et al. 2020. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics 10:3366−81

doi: 10.7150/thno.41849
[6]

Xia H, Dai Y, Zhao C, Zhang H, Shi Y, et al. 2023. Chromatographic and mass spectrometric technologies for chemical analysis of Euodiae fructus: a review. Phytochemical Analysis 34:5−29

doi: 10.1002/pca.3187
[7]

He N, Ma Z, Wang Q, Wang T, Yuan J, et al. 2024. Euodiae Fructus (Wuzhuyu): exploring traditional Chinese medicine compatibility for reducing toxicity. Chinese Traditional and Herbal Drugs 55:1812−38

[8]

Gao Y, Wang S, Gao Y, Yang L. 2024. The active ingredient of Evodia rutaecarpa reduces inflammation in knee osteoarthritis rats through blocking calcium influx and NF-κB pathway. Basic & Clinical Pharmacology & Toxicology 135:705−19

doi: 10.1111/bcpt.14096
[9]

Wang M, Zhou B, Cong W, Zhang M, Li Z, et al. 2021. Amelioration of AOM/DSS-induced murine colitis-associated cancer by evodiamine intervention is primarily associated with gut microbiota-metabolism-inflammatory signaling axis. Frontiers in Pharmacology 12:797605

doi: 10.3389/fphar.2021.797605
[10]

Hochfellner C, Evangelopoulos D, Zloh M, Wube A, Guzman JD, et al. 2015. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. Journal of Applied Microbiology 118:864−72

doi: 10.1111/jam.12753
[11]

Huang WC, Hou SM, Wu MP, Hsia CW, Jayakumar T, et al. 2022. Decreased human platelet activation and mouse pulmonary thrombosis by rutaecarpine and comparison of the relative effectiveness with BAY11-7082: crucial signals of p38-NF-κB. Molecules 27:476

doi: 10.3390/molecules27020476
[12]

Panda M, Tripathi SK, Zengin G, Biswal BK. 2023. Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. Cell Biology and Toxicology 39:1−31

doi: 10.1007/s10565-022-09772-8
[13]

Zhao Z, Xue Y, Zhang G, Jia J, Xiu R, et al. 2021. Identification of evodiamine and rutecarpine as novel TMEM16A inhibitors and their inhibitory effects on peristalsis in isolated Guinea-pig ileum. European Journal of Pharmacology 908:174340

doi: 10.1016/j.ejphar.2021.174340
[14]

Luo C, Ai J, Ren E, Li J, Feng C, et al. 2021. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: focus on its anti-cancer activity and bioavailability (Review). Experimental and Therapeutic Medicine 22:1327

doi: 10.3892/etm.2021.10762
[15]

Zhi B, Tang W, Zhang X. 2011. Enhancement of shrimp antiviral immune response through caspase-dependent apoptosis by small molecules. Marine Biotechnology 13:575−83

doi: 10.1007/s10126-010-9328-5
[16]

Iwaoka E, Wang S, Matsuyoshi N, Kogure Y, Aoki S, et al. 2016. Evodiamine suppresses capsaicin-induced thermal hyperalgesia through activation and subsequent desensitization of the transient receptor potential V1 channels. Journal of Natural Medicines 70:1−7

doi: 10.1007/s11418-015-0929-1
[17]

Yu Y, Lu Q, Chen F, Wang S, Niu C, et al. 2022. Serum untargeted metabolomics analysis of the mechanisms of evodiamine on type 2 diabetes mellitus model rats. Food & Function 13:6623−35

doi: 10.1039/D1FO04396J
[18]

Shan Q, Tian G, Wang J, Hui H, Shou Q, et al. 2021. Change in the active component of processed Tetradium ruticarpum extracts leads to improvement in efficacy and toxicity attenuation. Journal of Ethnopharmacology 264:113292

doi: 10.1016/j.jep.2020.113292
[19]

Yang CQ, Lian WY, Wang YG, Gao Y. 2021. Research progress in pharmacology and toxicology of evodiamine. China Journal of Chinese Materia Medica 46:5218−25

doi: 10.19540/j.cnki.cjcmm.20210518.602
[20]

Wang QZ, Liang JY. 2004. Studies on the chemical constituents of Evodia rutaecarpa (Juss.) Benth. Yao Xue Xue Bao [Acta pharmaceutica Sinica] 39:605−8 (in Chinese)

[21]

Liu X, Su X-L, Xu S, Yin M, Chen Y, et al. 2020. Wuchuyuamide V, a new amide alkaloid from the fruits of Tetradium trichotomum. Journal of Asian Natural Products Research 22:91−97

doi: 10.1080/10286020.2018.1538212
[22]

Yang XW, Zhang H, Hu J. 2008. Chemical constituents of near ripe fruits of Evodia rutaecarpa var. bodinieri. Journal of Tropical and Subtropical Botany 16:244−48

doi: 10.3969/j.issn.1005-3395.2008.03.010
[23]

Rao GX, Hu ZB, Song CZ. 2004. Study on the chemical components of small fruits of Evodia rutaecarpa. Natural Product Research and Development 16:28−30

doi: 10.16333/j.1001-6880.2004.01.008
[24]

Zhao C, Zhu HY, Hao XJ, Yang XS. 2006. Chemical study on Evodia ailanyifoliae. Natural Product Research and Development 18:418−19

doi: 10.16333/j.1001-6880.2006.03.016
[25]

Xia M, Pan Z, Cheng L, Ning D, Li Z, et al. 2016. Chemical constituents of fruits from Evodia delavayi. Pharmaceutical Journal 51:694−97

doi: 10.11669/cpj.2016.09.004
[26]

Zhao Z, Li N. 2009. Chemical composition separation and structural characterization of the stone tiger. Journal of Liaoning University of Chinese Medicine 11:190−91

doi: 10.13194/j.jlunivtcm.2009.11.192.zhaozhy.084
[27]

Zuo GY, He HP, Wang BG, Hong X, Hao XJ. 2003. A new indoloquinazoline alkaloid from the fruit of Evodia rutarecarpa. Acta Botanica Yunnanica 25:103−06

doi: 10.3969/j.issn.2095-0845.2003.01.013
[28]

Chuang WC, Chu CY, Sheu SJ. 1996. Determination of the alkaloids in Evodiae Fructus by high-performance liquid chromatography. Journal of Chromatography A 727:317−23

doi: 10.1016/0021-9673(95)01220-6
[29]

Li DW, Zhang M, Feng L, Huang SS, Zhang BJ, et al. 2020. Alkaloids from the nearly ripe fruits of Evodia rutaecarpa and their bioactivities. Fitoterapia 146:104668

doi: 10.1016/j.fitote.2020.104668
[30]

Zhao N, Li ZL, Li DH, Sun YT, Shan DT, et al. 2015. Quinolone and indole alkaloids from the fruits of Euodia rutaecarpa and their cytotoxicity against two human cancer cell lines. Phytochemistry 109:133−39

doi: 10.1016/j.phytochem.2014.10.020
[31]

Wang Q, Yan Q, Jin T, Liu F, Qiu P, et al. 2019. Distribution, bioactivity, and chemical synthesis of quinazoline alkaloids in Evodia plants. Journal of Plant Resources and Environment 28:84−98

doi: 10.3969/j.issn.1674-7895.2019.04.10
[32]

Huang X, Zhang YB, Yang XW. 2011. Indoloquinazoline alkaloids from Euodia rutaecarpa and their cytotoxic activities. Journal of Asian Natural Products Research 13:977−83

doi: 10.1080/10286020.2011.602015
[33]

Wang XX, Gao HY, Jiang Y, Zhao MB, Wu LJ, et al. 2013. Chemical constituents from fruits of Euodia rutaecarpa. Chinese Traditional and Herbal Drugs 44:1241−44

[34]

Wu TS, Yeh JH, Wu PL, Chen KT, Lin LC, et al. 1995. 7-hydroxyrutaecarpine from Tetradium-glabriofolium and Tetradium-ruticarpum. Heterocycles 41:1071−76

doi: 10.3987/COM-95-7050
[35]

Hu CQ, Li KK, Yang XW. 2012. New glycosidic alkaloid from the nearly ripe fruits of Euodia rutaecarpa. Journal of Asian Natural Products Research 14:634−39

doi: 10.1080/10286020.2012.682154
[36]

Teng J, Yang XW. 2006. Two new indoloquinazoline alkaloids from the unripe fruits of Evodia rutaecarpa. Heterocycles 68:1691−98

doi: 10.3987/COM-06-10772
[37]

Xia X, Luo JG, Liu RH, Yang MH, Kong LYY. 2016. New alkaloids from the leaves of Evodia rutaecarpa. Natural Product Research 30:2154−59

doi: 10.1080/14786419.2016.1146888
[38]

Zhang XL, Sun J, Wu HH, Jing YK, Chai X, et al. 2013. A new indoloquinazoline alkaloidal glucoside from the nearly ripe fruits of Evodia rutaecarpa. Natural Product Research 27:1917−21

doi: 10.1080/14786419.2013.791823
[39]

Yang ZX, Meng YH, Wang QH, Yang BY, Kuang HX. 2012. Pungent ingredient screening of Euodia rutaecarpa(Juss.) Benth. var. bodinieri (Dode) Huang. Chinese Traditional Patent Medicine 34:1106−10

doi: 10.3969/j.issn.1001-1528.2012.06.029
[40]

Su XL, Xu S, Shan Y, Yin M, Chen Y, et al. 2018. Three new quinazolines from Evodia rutaecarpa and their biological activity. Fitoterapia 127:186−92

doi: 10.1016/j.fitote.2018.02.003
[41]

Schramm A, Hamburger M. 2014. Gram-scale purification of dehydroevodiamine from Evodia rutaecarpa fruits, and a procedure for selective removal of quaternary indoloquinazoline alkaloids from Evodia extracts. Fitoterapia 94:127−33

doi: 10.1016/j.fitote.2014.02.005
[42]

Wang QZ, Liang JY, Feng X. 2010. Evodiagenine and dievodiamine, two new indole alkaloids from Evodia rutaecarpa. Chinese Chemical Letters 21:596−99

doi: 10.1016/j.cclet.2009.12.002
[43]

Wang QZ, Liang J, Chen J. 2005. Chemical Constituents of Evodia rutaecarpa. Journal of China Pharmaceutical University 36:520−22

[44]

Li YH, Zhang Y, Peng LY, Li XN, Zhao QS, et al. 2016. (±)-Evodiakine, a pair of rearranged rutaecarpine-type alkaloids From Evodia rutaecarpa. Natural Products and Bioprospecting 6:291−96

doi: 10.1007/s13659-016-0113-7
[45]

Zuo GY, Yang X, Hao XJ. 2000. Two new indole alkaloids from Evodia rutaecarpa. Chinese Chemical Letters 11:127−28

[46]

Li YH, He J, Li Y, Wu XD, Peng LY, et al. 2014. Evollionines A–C, three new alkaloids isolated from the fruits of Evodia rutaecarpa. Helvetica Chimica Acta 97:1481−86

doi: 10.1002/hlca.201300449
[47]

Shoji N, Umeyana A, Iuchi A, Saito N, Arihara S, et al. 1989. Two novel alkaloids from Evodia rutaecarpa. Journal of Natural Products 52:1160−62

doi: 10.1021/np50065a043
[48]

Qin J. 2015. Study on the chemical constituents of three species of medicine plants and their bioactivities. PhD Dissertation. Kunming University of Science and Technology, Yunnan, China

[49]

Wang Q, Liang JY, Feng X. 2009. X-ray crystallographic analysis and revision of NMR spectral assignments for rhetsinine. Journal of China Pharmaceutical University 40:503−5

doi: 10.3321/j.issn:1000-5048.2009.06.005
[50]

Li W, Sun X, Liu B, Zhang L, Fan Z, Ji Y. 2016. Screening and identification of hepatotoxic component in Evodia rutaecarpa based on spectrum-effect relationship and UPLC-Q-TOFMS. Biomedical Chromatography 30:1975−83

doi: 10.1002/bmc.3774
[51]

Rui W, Feng X, Liu F, Yin M, Wang M, et al. 2018. Chemical constituents from the fruits of Evodia rutaecarpa and their biological activities. Chinese Traditional Patent Medicine 40:121−25

doi: 10.3969/j.issn.1001-1528.2018.01.024
[52]

Wang XX, Zan K, Shi SP, Zeng KW, Jiang Y, et al. 2013. Quinolone alkaloids with antibacterial and cytotoxic activities from the fruits of Evodia rutaecarpa. Fitoterapia 89:1−7

doi: 10.1016/j.fitote.2013.04.007
[53]

Li YH, Liu X, Yin M, Liu F, Wang B, et al. 2020. Two new quinolone alkaloids from the nearly ripe fruits of Tetradium ruticarpum. Natural Product Research 34:1868−73

doi: 10.1080/14786419.2019.1566819
[54]

Huang X, Li W, Yang XW. 2012. New cytotoxic quinolone alkaloids from fruits of Evodia rutaecarpa. Fitoterapia 83:709−14

doi: 10.1016/j.fitote.2012.02.009
[55]

Ma C, Liu X, Shan Y, Xu S, Su XL, et al. 2018. A new quinolone alkaloid with cytotoxic activity from the fruits of Euodia Rutaecarpa. Natural Product Communications 13:339−41

doi: 10.1177/1934578x1801300317
[56]

Tang YQ, Feng XZ, Huang L. 1996. Quinolone alkaloids from Evodia rutaecarpa. Phytochemistry 43:719−22

doi: 10.1016/0031-9422(96)00304-4
[57]

Chuang WC, Cheng CM, Chang HC, Chen YP, Sheu SJ. 1999. Contents of constituents in mature and immature fruits of evodia species. Planta medica 65:567−71

doi: 10.1055/s-1999-14028
[58]

Ling Y, Hu P, Zhang L, Jin H, Chen J, et al. 2016. Identification and structural characterization of acylgluconic acids, flavonol glycosides, limonoids and alkaloids from the Fruits of Evodia Rutaecarpa by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. Journal of Chromatographic Science 54:1593−604

doi: 10.1093/chromsci/bmw109
[59]

Qin J, Liao CN, Chen WW, Li HY, Su J, et al. 2021. New limonoids and quinolone alkaloids with cytotoxic and anti-platelet aggregation activities from Evodia rutaecarpa (Juss. ) Benth. Fitoterapia 152:104875

doi: 10.1016/j.fitote.2021.104875
[60]

Yan Q, Shan Y, Yin M, Xu S, Ma C, et al. 2020. Phytochemical and chemotaxonomic study on Evodia rutaecarpa var. officinalis. Biochemical Systematics and Ecology 88:103961

doi: 10.1016/j.bse.2019.103961
[61]

Jin HZ, Lee JH, Lee D, Lee HS, Hong YS, et al. 2004. Quinolone alkaloids with inhibitory activity against nuclear factor of activated T cells from the fruits of Evodia rutaecarpa. Biological & Pharmaceutical Bulletin 27:926−28

doi: 10.1248/bpb.27.926
[62]

Shin HK, Do JC, Son JK, Lee CS, Lee CH, et al. 1998. Quinoline alkaloids from the fruits of Evodia officinalis. Planta Medica 64:764−65

doi: 10.1055/s-2006-957579
[63]

Zhao Y, Zhou X, Zhao YL, Gong XJ, Zhao C. 2015. A study of the geo-herbalism of Evodiae fructus based on a flow-injection mass spectrometric fingerprinting method combined with chemometrics. Molecules 20:2658−67

doi: 10.3390/molecules20022658
[64]

Perrett S, Whitfield PJ. 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Medica 61:276−8

doi: 10.1055/s-2006-958073
[65]

Wang Y, Gong M, Wang Z, Zhang Q, Gao H, et al. 2010. A review of chemical constituents of Evodia L. plants. Chinese Journal of Pharmacy 45(9):641−46

[66]

Diao YM, Gao YH, Peng XS. 2004. Study on chemical constituents of Trichophylla (Ⅰ). Chinese Traditional and Herbal Drugs 35:1098−99

[67]

Yu H, Li B, Chen X, Li C, Zhang G. 2010. Chemical study on Evodia vestita. Chinese Journal of Applied and Environmental Biology 16:72−75

doi: 10.3724/SP.J.1145.2010.00072
[68]

Xiao L. 2019. Phytochemical and bioactivity study of Tetradium trichotomum Lour. Master Thesis. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu, China

[69]

Liu QW,Tan CH, Qu SJ, Fan X,Zhu DY. 2006. Chemical constituents of Evodia fargesii Dode. Chinese Journal of Natural Medicines 4:25−29

[70]

Sichaem J, Rojpitikul T, Sawasdee P, Lugsannangarm K, Santi TP. 2015. Furoquinoline alkaloids from the leaves of Evodia lepta as potential cholinesterase inhibitors and their molecular docking. Natural Product Communications 10:1359−62

[71]

Sichaem J, Jirasirichote A, Sapasuntikul K, Khumkratok S, Sawasdee P, et al. 2014. New furoquinoline alkaloids from the leaves of Evodia lepta. Fitoterapia 92:270−73

doi: 10.1016/j.fitote.2013.12.002
[72]

Cai QY, Li WR, Wei JJ, Mi SQ, Wang NS. 2014. Antinociceptive activity of aqueous and alcohol extract of Evodia rutaecarpa. Indian Journal of Pharmaceutical Sciences 76:235−39

[73]

McCormick JL, McKee TC, Cardellina JH, Boyd MR. 1996. HIV inhibitory natural products. 26. Quinoline alkaloids from Euodia roxburghiana. Journal of Natural Products 59:469−71

doi: 10.1021/np960250m
[74]

Su XL, Yin M, Xu S, Shan Y, Feng X, et al. 2017. Analysis of chemical constituents in Evodia rutaecarpa by UPLC-Q-TOF-MS. Chinese Traditional Patent Medicine 39:1223−27

doi: 10.3969/j.issn.1001-1528.2017.06.024
[75]

Hughes GK, Neill KG. 1949. Alkaloids of the Australian Rutaceae: Evodia xanthoxyloides. I. Evoxanthine . Australian Journal of Chemistry 2:429−36

doi: 10.1071/CH9490429
[76]

Gell RJ, Hughes GK, Ritchie E. 1955. Alkaloids of Evodia alata F. Muell. Australian Journal of Chemistry 8:114−20

doi: 10.1071/ch9550114
[77]

Prager RH, Ritchie E, Robertson AV, Taylor WC. 1962. Alkaloids of the Australian Rutaceae: Evodia xanthoxyloides F. Muell. VI. The structure of Evodine. Australian Journal of Chemistry 15:301−04

doi: 10.1071/CH9620301
[78]

Yang X, Zhang H, Hu J. 2008. Isolation and structural characterization of a new compound of Evoditannin from Fructus officinalis fruit. Analytical chemistry 36(2):219−22

doi: 10.3321/j.issn:0253-3820.2008.02.017
[79]

Teng J, Yang XW. 2006. A new limonoid from the fruits of Evodia rutaecarpa(Juss.) Benth. Pharmazie 61:1038−40

doi: 10.1002/chin.200715166
[80]

Lin LC, Chou CJ, Chen KT. 1993. Constituents of the fruits of Evodia meliaefolia. Chinese Pharmaceutical Journal 25:421−29

[81]

Yoo SW, Kim JS, Kang SS, Son KH, Chang HW, et al. 2002. Constituents of the fruits and leaves of Euodia daniellii. Archives of Pharmacal Research 25:824−30

doi: 10.1007/BF02976999
[82]

Nakatani M, Takao H, Iwashita T, Naoki H, Hase T. 1988. Glaucin B, a new bitter limonoid from Evodia glauca. Phytochemistry 27:1429−32

doi: 10.1016/0031-9422(88)80210-3
[83]

Nakatani M, Takao H, Iwashita T, Naoki H, Hase T. 1987. The structure of Graucin A, a new bitter limonoid from Evodia grauca Miq. (Rutaceae). Bulletin of the Chemical Society of Japan 60:2503−07

doi: 10.1246/bcsj.60.2503
[84]

Lengyel E, Gellért M. 1978. Terpenoids from the root barks of Evodia meliaefolia. Die Pharmazie 33:372−72

[85]

Shi YS, Xia HM, Wu CH, Li CB, Duan CC, et al. 2020. Novel nortriterpenoids with new skeletons and limonoids from the fruits of Evodia rutaecarpa and their bioactivities. Fitoterapia 142:104503

doi: 10.1016/j.fitote.2020.104503
[86]

Nakatani M, Takao H, Hase T, Naoki H, Iwashita T. 1983. 6 Structures of bitter limonoids from Evodia grauca Miq. (Rutaceae). Japan: Symposium on the Chemistry of Natural Products Steering Committee. pp. 40−45

[87]

Sugimoto T, Ueno A, Kadota S, Cui CB, Kikuchi T. 1988. NEW 5β-H limonoids from Evodia Rutaecarpa BENTHAM. Chemical & pharmaceutical bulletin 36:1237−40

doi: 10.1248/cpb.36.1237
[88]

Zhao N, Li DH, Li ZL, Hua HM. 2016. Isolation and identification of chemical constituents of Evodia officinali. Journal of Shenyang Pharmaceutical University 33:103−9

doi: 10.14066/j.cnki.cn21-1349/r.2016.02.003
[89]

Yang XB, Qian P, Yang XW, Liu JX, Gong NB, et al. 2013. Limonoid constituents of Euodia rutaecarpa var. bodinieri and their inhibition on NO production in lipopolysaccharide-activated RAW264.7 macrophages. Journal of Asian Natural Products Research 15:1130−38

doi: 10.1080/10286020.2013.817392
[90]

Qian P, Jin HW, Yang XW. 2014. New limonoids from Coptidis Rhizoma-Euodiae Fructus couple. Journal of Asian Natural Products Research 16:333−44

doi: 10.1080/10286020.2014.881355
[91]

Liu Y, Liu C, Liu Y, Ge Q, Sun C. 2020. Cytochrome P450 Mediated Bioactivation of Rutaevin, a Bioactive and Potentially Hepatotoxic Component of Evodia Rutaecarpa. Chemical Research in Toxicology 33:3054−64

doi: 10.1021/acs.chemrestox.0c00475
[92]

Hodgson H, De La Peña R, Stephenson MJ, Thimmappa R, Vincent JL, et al. 2019. Identification of key enzymes responsible for protolimonoid biosynthesis in plants: opening the door to azadirachtin production. Proceedings of the National Academy of Sciences of the United States of America 116:17096−104

doi: 10.1073/pnas.1906083116
[93]

Liao CH, Pan SL, Guh JH, Chang YL, Pai HC, et al. 2005. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis 26:968−75

doi: 10.1093/carcin/bgi041
[94]

Du J, Sun Y, Lu YY, Lau E, Zhao M, et al. 2017. Berberine and evodiamine act synergistically against human breast cancer MCF-7 cells by inducing cell cycle arrest and apoptosis. Anticancer Research 37:6141−51

doi: 10.21873/anticanres.12063
[95]

Solanki R, Rajput PK, Jodha B, Yadav UCS, Patel S. 2024. Enhancing apoptosis-mediated anticancer activity of evodiamine through protein-based nanoparticles in breast cancer cells. Scientific Reports 14

[96]

Hu CY, Wu HT, Su YC, Lin CH, Chang CJ, et al. 2017. Evodiamine exerts an anti-hepatocellular carcinoma activity through a WWOX-dependent pathway. Molecules 22:1175

doi: 10.3390/molecules22071175
[97]

Li YL, Zhang NY, Hu X, Chen JL, Rao MJ, et al. 2018. Evodiamine induces apoptosis and promotes hepatocellular carcinoma cell death induced by vorinostat via downregulating HIF-1α under hypoxia. Biochemical and Biophysical Research Communications 498:481−86

doi: 10.1016/j.bbrc.2018.03.004
[98]

Yang J, Cai X, Lu W, Hu C, Xu X, et al. 2013. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells. Cancer Letters 328:243−51

doi: 10.1016/j.canlet.2012.09.019
[99]

Wei X, Zhang X, Peng Y, Wu J, Mo H, et al. 2024. Identification of a novel 10-hydroxyevodiamine prodrug as a potent topoisomerase inhibitor with improved aqueous solubility for treatment of hepatocellular carcinoma. European Journal of Medicinal Chemistry 279:116807

doi: 10.1016/j.ejmech.2024.116807
[100]

Panda M, Biswal BK. 2022. Evodiamine inhibits stemness and metastasis by altering the SOX9-β-catenin axis in non-small-cell lung cancer. Journal of Cellular Biochemistry 123:1454−66

doi: 10.1002/jcb.30304
[101]

Su T, Yang X, Deng JH, Huang QJ, Huang SC, et al. 2018. Evodiamine, a novel NOTCH3 methylation stimulator, significantly suppresses lung Carcinogenesis in vitro and in vivo. Frontiers in Pharmacology 9:434

doi: 10.3389/fphar.2018.00434
[102]

Kim H, Yu Y, Choi S, Lee H, Yu J, et al. 2019. Evodiamine eliminates colon cancer stem cells via suppressing NOTCH and WNT signaling. Molecules 24:4520

doi: 10.3390/molecules24244520
[103]

Wang D, Ge S, Chen Z, Song Y. 2019. Evodiamine exerts anticancer effects via induction of apoptosis and autophagy and suppresses the migration and invasion of human colon cancer cells. Journal of the Balkan Union of Oncology 24:1824−29

[104]

Chan S, Sun R, Tu X, Guo M, Yuan Q, et al. 2022. Rutaecarpine suppresses the proliferation and metastasis of colon cancer cells by regulating the STAT3 signaling. Journal of Cancer 13:847−57

doi: 10.7150/jca.66177
[105]

Wang C, Wang MW, Tashiro SI, Onodera S, Ikejima T. 2005. Roles of SIRT1 and phosphoinositide 3-OH kinase/protein kinase C pathways in evodiamine-induced human melanoma A375-S2 cell death. Journal of Pharmacological Sciences 97:494−500

doi: 10.1254/jphs.FPJ04055X
[106]

Wang C, Li S, Wang MW. 2010. Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-κB signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicology in Vitro 24:898−904

doi: 10.1016/j.tiv.2009.11.019
[107]

Guo X, Huang S, Zhang Y, Wang H, Li L, et al. 2024. Evodiamine inhibits growth of vemurafenib drug-resistant melanoma via suppressing IRS4/PI3K/AKT signaling pathway. Journal of Natural Medicines 78:342−54

doi: 10.1007/s11418-023-01769-9
[108]

Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. 2008. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radical Research 42:492−504

doi: 10.1080/10715760802112791
[109]

Yu HI, Chou HC, Su YC, Lin LH, Lu CH, et al. 2018. Proteomic analysis of evodiamine-induced cytotoxicity in thyroid cancer cells. Journal of Pharmaceutical and Biomedical Analysis 160:344−50

doi: 10.1016/j.jpba.2018.08.008
[110]

Chen MC, Yu CH, Wang SW, Pu HF, Kan SF, et al. 2010. Anti-proliferative effects of evodiamine on human thyroid cancer cell line ARO. Journal of Cellular Biochemistry 110:1495−503

doi: 10.1002/jcb.22716
[111]

Hong Z, Wang Z, Zhou B, Wang J, Tong H, et al. 2020. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. International Journal of Oncology 56:783−93

doi: 10.3892/ijo.2020.4956
[112]

Hu CY, Wu HT, Shan YS, Wang CT, Shieh GS, et al. 2023. Evodiamine exhibits anti-bladder cancer activity by suppression of glutathione peroxidase 4 and induction of ferroptosis. International Journal of Molecular Sciences 24:6021

doi: 10.3390/ijms24076021
[113]

Lei Y, Chan M, Liu H, Lyu W, Chen L, et al. 2022. Evodiamine as the active compound of evodiae fructus to inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway. Disease Markers 2022:4399334

doi: 10.1155/2022/4399334
[114]

Lee TJ, Kim EJ, Kim S, Jung EM, Park JW, et al. 2006. Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells. Molecular Cancer Therapeutics 5:2398−407

doi: 10.1158/1535-7163.MCT-06-0167
[115]

Yang JY, Woo HJ, Lee P, Kim SH. 2022. Induction of apoptosis and effect on the FAK/AKT/mTOR signal pathway by evodiamine in gastric cancer cells. Current Issues in Molecular Biology 44:4339−49

doi: 10.3390/cimb44090298
[116]

Hu C, Gao X, Han Y, Guo QI, Zhang K, et al. 2016. Evodiamine sensitizes BGC-823 gastric cancer cells to radiotherapy in vitro and in vivo. Molecular Medicine Reports 14:413−19

doi: 10.3892/mmr.2016.5237
[117]

Liu L, Wang X, Wang Y, Xi H, Guo J, et al. 2020. Evodiamine promotes apoptosis of glioma SHG-44 cells and its mechanism. Acta Academiae Medicinae Sinicae 42:591−95 (in Chinese)

doi: 10.3881/j.issn.1000-503X.11853
[118]

Shi CS, Li JM, Chin CC, Kuo YH, Lee YR, et al. 2017. Evodiamine induces cell growth arrest, apoptosis and suppresses tumorigenesis in human urothelial cell carcinoma cells. Anticancer Research 37:1149−59

doi: 10.21873/anticanres.11428
[119]

Mao M, Zheng X, Sheng Y, Chai J, Ding H. 2023. Evodiamine inhibits malignant progression of ovarian cancer cells by regulating lncRNA-NEAT1/miR-152-3p/CDK19 axis. Chemical Biology & Drug Design 102:101−14

doi: 10.1111/cbdd.14228
[120]

Zhu B, Zhao L, Liu Y, Jin Y, Feng J, et al. 2019. Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. The International Journal of Biochemistry & Cell Biology 108:98−110

doi: 10.1016/j.biocel.2019.01.012
[121]

Meng ZJ, Wu N, Liu Y, Shu KJ, Zou X, et al. 2015. Evodiamine inhibits the proliferation of human osteosarcoma cells by blocking PI3K/Akt signaling. Oncology Reports 34:1388−96

doi: 10.3892/or.2015.4084
[122]

Sachita K, Kim Y, Yu HJ, Cho SD, Lee JS. 2015. In vitro Assessment of the Anticancer potential of evodiamine in human oral cancer cell lines. Phytotherapy Research 29:1145−51

doi: 10.1002/ptr.5359
[123]

Jiang J, Hu C. 2009. Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules 14:1852−59

doi: 10.3390/molecules14051852
[124]

Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. 2007. Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis. Free Radical Research 41:1099−108

doi: 10.1080/10715760701499356
[125]

Luo LH, Seo JW, Nguyen DH, Kim EK, Kang SA, et al. 2010. Melanogenesis inhibitory effect of dehydroevodiamine isolated from fruits of Evodia rutaecarpa. Korean Journal of Chemical Engineering 27:915−18

doi: 10.1007/s11814-010-0147-1
[126]

Bae JR, Park WH, Suh DH, No JH, Kim YB, et al. 2020. Role of limonin in anticancer effects of Evodia rutaecarpa on ovarian cancer cells. BMC Complementary Medicine and Therapies 20:94

doi: 10.1186/s12906-020-02890-y
[127]

Zhang L, Li L, Chen X, Yuan S, Xu T, et al. 2023. Evodiamine inhibits ESCC by inducing M-phase cell-cycle arrest via CUL4A/p53/p21 axis and activating noxa-dependent intrinsic and DR4-dependent extrinsic apoptosis. Phytomedicine 108:154493

doi: 10.1016/j.phymed.2022.154493
[128]

Park SY, Park C, Park SH, Hong SH, Kim GY, et al. 2017. 2016. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human cervical cancer cells via activation of AMP-activated protein kinase. BioScience Trends 10:467−76

doi: 10.5582/bst.2016.01170
[129]

Zhong ZF, Tan W, Wang SP, Qiang WA, Wang YT. 2015. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and -resistant human ovarian cancer cells. Scientific Reports 5:16415

doi: 10.1038/srep16415
[130]

Wei L, Jin X, Cao Z, Li W. 2016. Evodiamine induces extrinsic and intrinsic apoptosis of ovarian cancer cells via the mitogen-activated protein kinase/phosphatidylinositol-3-kinase/protein kinase B signaling pathways. Journal of Traditional Chinese Medicine 36:353−59

doi: 10.1016/S0254-6272(16)30049-8
[131]

Chen TC, Chien CC, Wu MS, Chen YC. 2016. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human ovarian cancer cells. Phytomedicine 23:68−78

doi: 10.1016/j.phymed.2015.12.003
[132]

Wang KL, Hsia SM, Yeh JY, Cheng SC, Wang PS, et al. 2013. Anti-Proliferative Effects of Evodiamine on Human Breast Cancer Cells. PLoS ONE 8:e0067297

doi: 10.1371/journal.pone.0067297
[133]

Cokluk E, Ozman Z, Eskiler GG, Ozkan AD, Sekeroglu MR. 2021. Comparison of the effects of rutaecarpine on molecular subtypes of breast cancer. Journal of Cancer Research and Therapeutics 17:988−93

doi: 10.4103/jcrt.JCRT_1182_20
[134]

Yang ZG, Chen AQ, Liu B. 2009. Antiproliferation and apoptosis induced by evodiamine in human colorectal carcinoma cells (COLO-205). Chemistry & Biodiversity 6:924−33

doi: 10.1002/cbdv.200800256
[135]

Huang J, Chen ZH, Ren CM, Wang DX, Yuan SX, et al. 2015. Antiproliferation effect of evodiamine in human colon cancer cells is associated with IGF-1/HIF-1α downregulation. Oncology Reports 34:3203−11

doi: 10.3892/or.2015.4309
[136]

Li YL, Pan YN, Wu WJ, Mao SY, Sun J, et al. 2016. Evodiamine induces apoptosis and enhances apoptotic effects of erlotinib in wild-type EGFR NSCLC cells via S6K1-mediated Mcl-1 inhibition. Medical Oncology 33:16

doi: 10.1007/s12032-015-0726-4
[137]

Lu X, Zhang W, Liu Y, Liu M. 2022. Evodiamine exerts inhibitory roles in non-small cell lung cancer cell A549 and its sub-population of stem-like cells. Experimental and Therapeutic Medicine 24:746

doi: 10.3892/etm.2022.11682
[138]

Zhuang X, Wang Y, Lin S, Zhang G. 2024. Rutaecarpine induces apoptosis via a mitochondrial membrane-mediated pathway in the human liver cancer cells (HepG2). Indian Journal of Pharmaceutical Education and Research 58:1070−76

doi: 10.5530/ijper.58.4.118
[139]

Yang F, Shi L, Liang T, Ji L, Zhang G, et al. 2017. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma. Biochemical and Biophysical Research Communications 485:54−61

doi: 10.1016/j.bbrc.2017.02.017
[140]

Wang XN, Han X, Xu LN, Yin LH, Xu YW, et al. 2008. Enhancement of apoptosis of human hepatocellular carcinoma SMMC-7721 cells through synergy of berberine and evodiamine. Phytomedicine 15:1062−68

doi: 10.1016/j.phymed.2008.05.002
[141]

Yang L, Liu X, Wu D, Zhang M, Ran G, et al. 2014. Growth inhibition and induction of apoptosis in SGC-7901 human gastric cancer cells by evodiamine. Molecular Medicine Reports 9:1147−52

doi: 10.3892/mmr.2014.1924
[142]

Rasul A, Yu B, Zhong L, Khan M, Yang H, et al. 2012. Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncology Reports 27:1481−87

doi: 10.3892/or.2012.1694
[143]

Liu L, Sun X, Guo Y, Ge K. 2022. Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca2+ pathway. Chemico-Biological Interactions 351:109756

doi: 10.1016/j.cbi.2021.109756
[144]

Ogasawara M, Matsubara T, Suzuki H. 2001. Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biological & Pharmaceutical Bulletin 24:917−20

doi: 10.1248/bpb.24.917
[145]

Yang SS, Tian M, Yuan L, Deng HY, Wang L, et al. 2016. Analysis of E. rutaecarpa alkaloids constituents in vitro and in vivo by UPLC-Q-TOF-MS combined with diagnostic fragment. Journal of Analytical Methods in Chemistry 2016:4218967

[146]

Shi HL, Wu XJ, Liu Y, Xie JQ. 2013. Berberine counteracts enhanced IL-8 expression of AGS cells induced by evodiamine. Life Sciences 93:830−39

doi: 10.1016/j.lfs.2013.09.010
[147]

Huang YC, Guh JH, Teng CM. 2004. Induction of mitotic arrest and apoptosis by evodiamine in human leukemic T-lymphocytes. Life Sciences 75:35−49

doi: 10.1016/j.lfs.2003.11.025
[148]

Adams M, Mahringer A, Kunert O, Fricker G, Efferth T, et al. 2007. Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa. Planta Medica 73:1554−57

doi: 10.1055/s-2007-993743
[149]

Sun C, Zhang G, Luan S, Luan C, Shao H, et al. 2016. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway. Journal of Receptors and Signal Transduction 36:422−28

doi: 10.3109/10799893.2015.1122040
[150]

Zhang S, Xiong Y, Zhang Y, Zhao H. 2019. Targeting of mTORC1/2 by dihydroevocarpine induces cytotoxicity in acute myeloid leukemia. Journal of Cellular Physiology 234:13032−41

doi: 10.1002/jcp.27974
[151]

Christodoulou MS, Sacchetti A, Ronchetti V, Caufin S, Silvani A, et al. 2013. Quinazolinecarboline alkaloid evodiamine as scaffold for targeting topoisomerase I and sirtuins. Bioorganic & Medicinal Chemistry 21:6920−28

doi: 10.1016/j.bmc.2013.09.030
[152]

Sui H, Zhou LH, Zhang YL, Huang JP, Liu X, et al. 2016. Evodiamine suppresses ABCG2 mediated drug resistance by inhibiting p50/p65 NF-κB pathway in colorectal cancer. Journal of Cellular Biochemistry 117:1471−81

doi: 10.1002/jcb.25451
[153]

Xu C, Wang Q, Feng X, Bo Y. 2014. Effect of evodiagenine mediates photocytotoxicity on human breast cancer cells MDA-MB-231 through inhibition of PI3K/AKT/mTOR and activation of p38 pathways. Fitoterapia 99:292−99

doi: 10.1016/j.fitote.2014.10.010
[154]

Moon TC, Murakami M, Kudo I, Son KH, Kim HP, et al. 1999. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflammation Research 48:621−25

doi: 10.1007/s000110050512
[155]

Yuan SM, Gao K, Wang DM, Quan XZ, Liu JN, et al. 2011. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(ΔE9) transgenic mouse models of Alzheimer's disease. Acta Pharmacologica Sinica 32:295−302

doi: 10.1038/aps.2010.230
[156]

Choi YH, Shin EM, Kim YS, Cai XF, Lee JJ, et al. 2006. Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms. Archives of Pharmacal Research 29:293−97

doi: 10.1007/BF02968573
[157]

Noh EJ, Ahn KS, Shin EM, Jung SH, Kim YS. 2006. Inhibition of lipopolysaccharide-induced iNOS and COX-2 expression by dehydroevodiamine through suppression of NF-κB activation in RAW 264.7 macrophages. Life Sciences 79:695−701

doi: 10.1016/j.lfs.2006.02.020
[158]

Chiou WF, Sung YJ, Liao JF, Shum AY, Chen CF. 1997. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. Journal of Natural Products 60:708−11

doi: 10.1021/np960495z
[159]

Jayakumar T, Lin KC, Chang CC, Hsia CW, Manubolu M, et al. 2022. Targeting MAPK/NF-κB pathways in anti-inflammatory potential of rutaecarpine: impact on Src/FAK-mediated macrophage migration. International Journal of Molecular Sciences 23:92

doi: 10.3390/ijms23010092
[160]

Jayakumar T, Yang CM, Yen TL, Hsu CY, Sheu JR, et al. 2022. Anti-inflammatory mechanism of an alkaloid rutaecarpine in LTA-stimulated RAW 264.7 cells: pivotal role on NF-κB and ERK/p38 signaling molecules. International Journal of Molecular Sciences 23:5889

doi: 10.3390/ijms23115889
[161]

Lv Q, Xue Y, Li G, Zou L, Zhang X, et al. 2015. Beneficial effects of evodiamine on P2X4-mediated inflammatory injury of human umbilical vein endothelial cells due to high glucose. International Immunopharmacology 28:1044−49

doi: 10.1016/j.intimp.2015.08.020
[162]

Yang CJ, Li HX, Wang JR, Zhang ZJ, Wu TL, et al. 2022. Design, synthesis and biological evaluation of novel evodiamine and rutaecarpine derivatives against phytopathogenic fungi. European Journal of Medicinal Chemistry 227:113937

doi: 10.1016/j.ejmech.2021.113937
[163]

Wang L, Hu CP, Deng PY, Shen SS, Zhu HQ, et al. 2005. The protective effects of rutaecarpine on gastric mucosa injury in rats. Planta medica 71:416−19

doi: 10.1055/s-2005-864135
[164]

Li YY, Feng JL, Li Z, Zang XY, Yang XW. 2022. Separation and enrichment of alkaloids from coptidis rhizoma and euodiae fructus by macroporous resin and evaluation of the effect on bile reflux gastritis rats. Molecules 27:724

doi: 10.3390/molecules27030724
[165]

Wu CL, Hung CR, Chang FY, Lin LC, Francis Pau KY, et al. 2002. Effects of evodiamine on gastrointestinal motility in male rats. European Journal of Pharmacology 457:169−76

doi: 10.1016/S0014-2999(02)02687-0
[166]

Jayakumar T, Sheu JR. 2011. Cardiovascular pharmacological actions of rutaecarpine, a quinazolinocarboline alkaloid isolated from Evodia rutaecarpa. Journal of Experimental & Clinical Medicine 3:63−69

doi: 10.1016/j.jecm.2011.02.004
[167]

Yoshinori K , Kiyoko H, Yumiko N , Yoshiharu Y , Toshikazu Ka. 2001. The positive inotropic and chronotropic effects of evodiamine and rutaecarpine, indoloquinazoline alkaloids isolated from the fruits of Evodia rutaecarpa, on the guinea-pig isolated right atria: possible involvement of vanilloid receptors. Planta Medica 67(3):244−48

doi: 10.1055/s-2001-12008
[168]

Kee Z, Kodji X, Brain SD. 2018. The role of calcitonin gene related peptide (CGRP) in neurogenic vasodilation and its cardioprotective effects. Frontiers in Physiology 9:1249

doi: 10.3389/fphys.2018.01249
[169]

Kim JY, Kim D, Kwon O. 2016. Effective screening for the anti-hypertensive of selected herbs used in the traditional Korean medicines. Applied Biological Chemistry 59:525−32

doi: 10.1007/s13765-016-0190-7
[170]

Ge X, Chen S, Liu M, Liang T, Liu C. 2015. Evodiamine attenuates PDGF-BB-induced migration of rat vascular smooth muscle cells through activating PPARγ. International Journal of Molecular Sciences 16:28180−93

doi: 10.3390/ijms161226093
[171]

Xue H, Cheng Y, Wang X, Yue Y, Zhang W, et al. 2015. Rutaecarpine and evodiamine selected as β1-AR inhibitor candidates using β1-AR/CMC-offline-UPLC/MS prevent cardiac ischemia-reperfusion injury via energy modulation. Journal of Pharmaceutical and Biomedical Analysis 115:307−14

doi: 10.1016/j.jpba.2015.07.022
[172]

Jiang XH, Wu QQ, Xiao Y, Yuan Y, Yang Z, et al. 2017. Evodiamine prevents isoproterenol-induced cardiac fibrosis by regulating endothelial-to-mesenchymal transition. Planta medica 83:761−69

doi: 10.1055/s-0042-124044
[173]

Son JK, Chang HW, Jahng Y. 2015. Progress in studies on Rutaecarpine. II.—Synthesis and structure-biological activity relationships. Molecules 20:10800−21

doi: 10.3390/molecules200610800
[174]

Shyu KG, Lin S, Lee CC, Chen E, Lin LC, et al. 2006. Evodiamine inhibits in vitro angiogenesis: implication for antitumorgenicity. Life Sciences 78:2234−43

doi: 10.1016/j.lfs.2005.09.027
[175]

Tian KM, Li JJ, Xu SW. 2019. Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacological Research 141:541−50

doi: 10.1016/j.phrs.2018.12.019
[176]

Chen CF, Chiou WF, Chou CJ, Liao JF, Lin LC, et al. 2002. Pharmacological effects of Evodia rutaecarpa and its bioactive components. Journal of Chinese Pharmaceutical Sciences 54:419−35

[177]

Loh SH, Lee AR, Huang WH, Lin CI. 1992. Ionic mechanisms responsible for the antiarrhythmic action of dehydroevodiamine in guinea-pig isolated cardiomyocytes. British journal of pharmacology 106:517−23

doi: 10.1111/j.1476-5381.1992.tb14368.x
[178]

Loh SH, Tsai YT, Lee CY, Chang CY, Tsai CS, et al. 2014. Antiarrhythmic effects of dehydroevodiamine in isolated human myocardium and cardiomyocytes. Journal of ethnopharmacology 153:753−62

doi: 10.1016/j.jep.2014.03.043
[179]

Ge X, Chen SY, Liu M, Liang TM, Liu C. 2016. Evodiamine inhibits PDGF-BB-induced proliferation of rat vascular smooth muscle cells through the suppression of cell cycle progression and oxidative stress. Molecular Medicine Reports 14:4551−58

doi: 10.3892/mmr.2016.5798
[180]

Wang L, Eftekhari P, Schachner D, Ignatova ID, Palme V, et al. 2018. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Scientific Reports 8:11061

doi: 10.1038/s41598-018-29281-1
[181]

Seya K, Furukawa KI, Chiyoya M, Yu Z, Kikuchi H, et al. 2016. 1-Methyl-2-undecyl-4(1H)-quinolone, a derivative of quinolone alkaloid evocarpine, attenuates high phosphate-induced calcification of human aortic valve interstitial cells by inhibiting phosphate cotransporter PiT-1. Journal of Pharmacological Sciences 131:51−57

doi: 10.1016/j.jphs.2016.04.013
[182]

Cao Q, Dong P, Han H. 2024. Therapeutic Effects of the major alkaloid constituents of Evodia rutaecarpa in Alzheimer's disease. Psychogeriatrics 24:443−57

doi: 10.1111/psyg.13051
[183]

Park CH, Kim SH, Choi W, Lee YJ, Kim JS, et al. 1996. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Medica 62:405−9

doi: 10.1055/s-2006-957926
[184]

Jiang H, Qiu J, Deng X, Li D, Tao T. 2023. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer's disease comorbid pain by network pharmacology analysis. Heliyon 9:e18455

doi: 10.1016/j.heliyon.2023.e18455
[185]

Chou CH, Yang CR. 2021. Neuroprotective studies of evodiamine in an okadaic acid-induced neurotoxicity. International Journal of Molecular Sciences 22:5347

doi: 10.3390/ijms22105347
[186]

Han M, Hu L, Chen Y. 2019. Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury. Drug Design Development and Therapy 13:2923−31

doi: 10.2147/DDDT.S216156
[187]

Zhao T, Zhang X, Zhao Y, Zhang L, Bai X, et al. 2014. Pretreatment by evodiamine is neuroprotective in cerebral ischemia: up-regulated pAkt, pGSK3β, down-regulated NF-κB expression, and ameliorated BBB permeability. Neurochemical Research 39:1612−20

doi: 10.1007/s11064-014-1356-5
[188]

Kobayashi Y. 2003. The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Medica 69:425−28

doi: 10.1055/s-2003-39701
[189]

Tao W, Su K, Huang Y, Lu Z, Wang Y, et al. 2023. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/NF-κB pathway. Journal of ethnopharmacology 312:116487

doi: 10.1016/j.jep.2023.116487
[190]

Yu L, Wang Z, Huang M, Li Y, Zeng K, et al. 2016. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1859:1100−11

doi: 10.1016/j.bbagrm.2015.10.001
[191]

George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S. 2015. O-prenylated flavonoid, an antidiabetes constituent in Melicope lunu-ankenda. Journal of ethnopharmacology 168:158−63

doi: 10.1016/j.jep.2015.03.060
[192]

Liu LH, Xie JY, Guo WW, Wu GY, Chen ZF, et al. 2014. Evodiamine activates AMPK and promotes adiponectin multimerization in 3T3-L1 adipocytes. Journal of Asian Natural Products Research 16:1074−83

doi: 10.1080/10286020.2014.939071
[193]

Wang T, Wang Y, Kontani Y, Kobayashi Y, Sato Y, et al. 2008. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling. Endocrinology 149:358−66

doi: 10.1210/en.2007-0467
[194]

Wang T, Wang Y, Yamashita H. 2009. Evodiamine inhibits adipogenesis via the EGFR-PKCα-ERK signaling pathway. FEBS Letters 583:3655−59

doi: 10.1016/j.febslet.2009.10.046
[195]

Shi J, Yan J, Lei Q, Zhao J, Chen K, et al. 2009. Intragastric administration of evodiamine suppresses NPY and AgRP gene expression in the hypothalamus and decreases food intake in rats. Brain Research 1247:71−78

doi: 10.1016/j.brainres.2008.09.091
[196]

Shin YW, Bae EA, Cai XF, Lee JJ, Kim DH. 2007. In vitro and in vivo antiallergic effect of the fructus of Evodia rutaecarpa and its constituents. Biological & Pharmaceutical Bulletin 30:197−99

doi: 10.1248/bpb.30.197
[197]

Wu JY, Chang MC, Chen CS, Lin HC, Tsai HP, et al. 2013. Topoisomerase I inhibitor evodiamine acts as an antibacterial agent against drug-resistant Klebsiella pneumoniae. Planta medica 79:27−29

doi: 10.1055/s-0032-1327925
[198]

Xu JJ, Li HD, Wu MF, Zhu L, Du XS, et al. 2021. 3-B-RUT, a derivative of RUT, protected against alcohol-induced liver injury by attenuating inflammation and oxidative stress. International Immunopharmacology 95:107471

doi: 10.1016/j.intimp.2021.107471
[199]

Yan C, Peng T, Zhang T, Wang Y, Li N, et al. 2023. Molecular mechanisms of hepatotoxicity induced by compounds occurring in Evodiae Fructus. Drug Metabolism Reviews 55:75−93

doi: 10.1080/03602532.2023.2180027
[200]

Liu J, Shi Y, Tian Z, Li F, Hao Z, et al. 2022. Bioactivity-guided synthesis accelerates the discovery of evodiamine derivatives as potent insecticide candidates. Journal of Agricultural and Food Chemistry 70:5197−206

doi: 10.1021/acs.jafc.1c08297