[1]

Smith H. 1979. Plant hormones. Nature 278:483

doi: 10.1038/278483a0
[2]

Shen G, Zhang J, Lei Y, Xu Y, Wu J. 2023. Between-plant signaling. Annual Review of Plant Biology 74:367−86

doi: 10.1146/annurev-arplant-070122-015430
[3]

Li D, Pan C, Lu J, Zaman W, Zhao H, et al. 2021. Lupeol accumulation correlates with auxin in the epidermis of Castor. Molecules 26:2978

doi: 10.3390/molecules26102978
[4]

de Wit M, Galvão VC, Fankhauser C. 2016. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology 67:513−37

doi: 10.1146/annurev-arplant-043015-112252
[5]

Obata T. 2019. Metabolons in plant primary and secondary metabolism. Phytochemistry Reviews 18:1483−507

doi: 10.1007/s11101-019-09619-x
[6]

Li C, Jiang R, Wang X, Lv Z, Li W, et al. 2024. Feedback regulation of plant secondary metabolism: Applications and challenges. Plant Science 340:111983

doi: 10.1016/j.plantsci.2024.111983
[7]

Yin Q, Xiang L, Han X, Zhang Y, Lyu R, et al. 2025. The evolutionary advantage of artemisinin production by Artemisia annua. Trends in Plant Science 30:213−26

doi: 10.1016/j.tplants.2024.09.006
[8]

Pan Q, Wang C, Xiong Z, Wang H, Fu X, et al. 2019. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus. Frontiers in Plant Science 10:931

doi: 10.3389/fpls.2019.00931
[9]

Shimotohno A, Aki SS, Takahashi N, Umeda M. 2021. Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology 72:273−96

doi: 10.1146/annurev-arplant-080720-103739
[10]

Kajla M, Roy A, Singh IK, Singh A. 2023. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. Frontiers in Plant Science 14:1126567

doi: 10.3389/fpls.2023.1126567
[11]

Rashidi S, Yousefi AR, Mastinu A. 2024. Mycorrhizal symbiosis can change the composition of secondary metabolites in fruits of Solanum nigrum L. Chemistry & Biodiversity 21:e202400208

doi: 10.1002/cbdv.202400208
[12]

Chen K, Liu J, Ji R, Chen T, Zhou X, et al. 2019. Biogenic synthesis and spatial distribution of endogenous phytohormones and ginsenosides provide insights on their intrinsic relevance in Panax ginseng. Frontiers in Plant Science 9:1951

doi: 10.3389/fpls.2018.01951
[13]

Gasperini D, Howe GA. 2024. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. Plant Physiology 195:135−54

doi: 10.1093/plphys/kiae045
[14]

Fàbregas N, Fernie AR. 2021. The interface of central metabolism with hormone signaling in plants. Current Biology 31:R1535−48

doi: 10.1016/j.cub.2021.09.070
[15]

Li W, Li W, Yang S, Ma Z, Zhou Q, et al. 2020. Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. Journal of Agricultural and Food Chemistry 68:5270−81

doi: 10.1021/acs.jafc.0c00476
[16]

Jain D, Bisht S, Parvez A, Singh K, Bhaskar P, et al. 2024. Effective biotic elicitors for augmentation of secondary metabolite production in medicinal plants. Agriculture 14:796

doi: 10.3390/agriculture14060796
[17]

Fujioka S, Sakurai A. 1997. Biosynthesis and metabolism of brassinosteroids. Physiologia Plantarum 100:710−15

doi: 10.1111/j.1399-3054.1997.tb03078.x
[18]

Gou W, Li X, Guo S, Liu Y, Li F, et al. 2019. Autophagy in plant: a new orchestrator in the regulation of the phytohormones homeostasis. International Journal of Molecular Sciences 20:2900

doi: 10.3390/ijms20122900
[19]

Zhu Z, Bao Y, Yang Y, Zhao Q, Li R. 2024. Research progress on heat stress response mechanism and control measures in medicinal plants. International Journal of Molecular Sciences 25:8600

doi: 10.3390/ijms25168600
[20]

Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32:295−318

doi: 10.1105/tpc.19.00335
[21]

Hernández-García J, Briones-Moreno A, Blázquez MA. 2021. Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology 109:46−54

doi: 10.1016/j.semcdb.2020.04.009
[22]

Castro-Camba R, Sánchez C, Vidal N, Vielba J. 2022. Interactions of gibberellins with phytohormones and their role in stress responses. Horticulturae 8:241

doi: 10.3390/horticulturae8030241
[23]

Murase K, Hirano Y, Sun TP, Hakoshima T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459−63

doi: 10.1038/nature07519
[24]

Hartweck LM. 2008. Gibberellin signaling. Planta 229:1−13

doi: 10.1007/s00425-008-0830-1
[25]

Wang N, Wang K, Li S, Jiang Y, Li L, et al. 2020. Transcriptome-wide identification, evolutionary analysis, and GA stress response of the GRAS gene family in Panax ginseng C. A. Meyer. Plants 9:190

doi: 10.3390/plants9020190
[26]

Li W, Bai Z, Pei T, Yang D, Mao R, et al. 2019. SmGRAS1 and SmGRAS2 regulate the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Frontiers in Plant Science 10:1367

doi: 10.3389/fpls.2019.01367
[27]

Li W, Xing B, Mao R, Bai Z, Yang D, et al. 2020. SmGRAS3 negatively responds to GA signaling while promotes tanshinones biosynthesis in Salvia miltiorrhiza. Industrial Crops and Products 144:112004

doi: 10.1016/j.indcrop.2019.112004
[28]

Moreira GC, Carneiro CN, dos Anjos GL, da Silva F, Santos JLO, et al. 2022. Support vector machine and PCA for the exploratory analysis of Salvia officinalis samples treated with growth regulators based in the agronomic parameters and multielement composition. Food Chemistry 373:131345

doi: 10.1016/j.foodchem.2021.131345
[29]

Geem KR, Lim Y, Hong J, Bae W, Lee J, et al. 2024. Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng. Journal of Ginseng Research 48:220−28

doi: 10.1016/j.jgr.2023.11.002
[30]

Zhiponova M, Yordanova Z, Zaharieva A, Ivanova L, Gašić U, et al. 2024. Cytokinins enhance the metabolic activity of in vitro-grown catmint (Nepeta nuda L.). Plant Physiology and Biochemistry 214:108884

doi: 10.1016/j.plaphy.2024.108884
[31]

Wei H, Chen J, Zhang X, Lu Z, Liu G, et al. 2024. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana. International Journal of Biological Macromolecules 266:131095

doi: 10.1016/j.ijbiomac.2024.131095
[32]

Sun H, Cui H, Zhang J, Kang J, Wang Z, et al. 2021. Gibberellins inhibit flavonoid biosynthesis and promote nitrogen metabolism in Medicago truncatula. International Journal of Molecular Sciences 22:9291

doi: 10.3390/ijms22179291
[33]

Yang W, Cortijo S, Korsbo N, Roszak P, Schiessl K, et al. 2021. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 371:1350−55

doi: 10.1126/science.abe2305
[34]

Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Eric Schaller G, et al. 2006. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proceedings of the National Academy of Sciences of the United States of America 103:11081−85

doi: 10.1073/pnas.0602038103
[35]

Chang YN, Wang Z, Ren Z, Wang CH, Wang P, et al. 2022. Nuclear pore anchor and early in short days 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis. Journal of Integrative Plant Biology 64:2060−74

doi: 10.1111/jipb.13349
[36]

Kuang X, Sun S, Li Y, Zhang H, Guo B, et al. 2022. Transcriptome sequencing with nanopore technology for acquiring a deeper understanding of abscisic acid regulation of secondary mechanisms in Salvia miltiorrhiza. Industrial Crops and Products 177:114535

doi: 10.1016/j.indcrop.2022.114535
[37]

Grzegorczyk-Karolak I, Hnatuszko-Konka K, Krzemińska M, Olszewska MA, Owczarek A. 2021. Cytokinin-based tissue cultures for stable medicinal plant production: regeneration and phytochemical profiling of Salvia bulleyana shoots. Biomolecules 11:1513

doi: 10.3390/biom11101513
[38]

Kochan E, Balcerczak E, Szymczyk P, Sienkiewicz M, Zielińska-Bliźniewska H, et al. 2019. Abscisic acid regulates the 3-hydroxy-3-methylglutaryl CoA reductase gene promoter and ginsenoside production in Panax quinquefolium hairy root cultures. International Journal of Molecular Sciences 20:1310

doi: 10.3390/ijms20061310
[39]

Deng C, Shi M, Fu R, Zhang Y, Wang Q, et al. 2020. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Journal of Experimental Botany 71:5948−62

doi: 10.1093/jxb/eraa295
[40]

Erişen S, Kurt-Gür G, Servi H. 2020. In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Industrial Crops and Products 157:112892

doi: 10.1016/j.indcrop.2020.112892
[41]

Brütting C, Schäfer M, Vanková R, Gase K, Baldwin IT, et al. 2017. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. The Plant Journal 89:15−30

doi: 10.1111/tpj.13316
[42]

Liu S, Zhang Q, Kollie L, Dong J, Liang Z. 2023. Molecular networks of secondary metabolism accumulation in plants: Current understanding and future challenges. Industrial Crops and Products 201:116901

doi: 10.1016/j.indcrop.2023.116901
[43]

Yan K, Bian L, He W, Han G, Zhang Z, et al. 2020. Phytohormone signaling pathway for eliciting leaf phenolic synthesis in honeysuckle (Lonicera japonica Thunb. ) under coastal saline environment. Industrial Crops and Products 157:112929

doi: 10.1016/j.indcrop.2020.112929
[44]

Shi M, Zhu R, Zhang Y, Zhang S, Liu T, et al. 2022. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metabolic Engineering 73:182−91

doi: 10.1016/j.ymben.2022.08.002
[45]

Chen C, Wang C, Li J, Gao X, Huang Q, et al. 2022. Genome-wide analysis of U-box E3 ubiquitin ligase family in response to ABA treatment in Salvia miltiorrhiza. Frontiers in Plant Science 13:829447

doi: 10.3389/fpls.2022.829447
[46]

Su L, Lv A, Wen W, Fan N, Li J, et al. 2022. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. The Plant Journal 112:756−71

doi: 10.1111/tpj.15977
[47]

Jiao C, Gu Z. 2019. Cyclic GMP mediates abscisic acid-stimulated isoflavone synthesis in soybean sprouts. Food Chemistry 275:439−45

doi: 10.1016/j.foodchem.2018.09.071
[48]

Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295(22):7710−25

doi: 10.1074/jbc.REV120.010854
[49]

Banno H, Hirano K, Nakamura T, Irie K, Nomoto S, et al. 1993. NPK1 a tobacco gene that encodes a protein with a domain homologous to yeast BCK1 STE11 and Byr2 protein kinases. Molecular and Cellular Biology 13:4745−52

doi: 10.1128/mcb.13.8.4745-4752.1993
[50]

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427−41

doi: 10.1016/0092-8674(93)90119-B
[51]

Qiao H; Shen Z; Huang SC; Schmitz RJ; Urich MA; et al. 2012 Processing and Subcellular Trafficking of 51 Qiao H, Shen Z, Huang SC, Schmitz RJ, Urich MA, et al. 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390−93

doi: 10.1126/science.1225974
[52]

Wang X, Kong H, Ma H. 2009. F-box proteins regulate ethylene signaling and more. Genes & Development 23:391−96

doi: 10.1101/gad.1781609
[53]

Zheng H, Jing L, Jiang X, Pu C, Zhao S, et al. 2021. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytologist 231:1940−55

doi: 10.1111/nph.17463
[54]

Bai Z, Li W, Jia Y, Yue Z, Jiao J, et al. 2018. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 248:243−55

doi: 10.1007/s00425-018-2884-z
[55]

Li X, Xu M, Zhou K, Hao S, Li L, et al. 2024. SmEIL1 transcription factor inhibits tanshinone accumulation in response to ethylene signaling in Salvia miltiorrhiza. Frontiers in Plant Science 15:1356922

doi: 10.3389/fpls.2024.1356922
[56]

Tang Y, Li L, Yan T, Fu X, Shi P, et al. 2018. AaEIN3 mediates the downregulation of artemisinin biosynthesis by ethylene signaling through promoting leaf senescence in Artemisia annua. Frontiers in Plant Science 9:413

doi: 10.3389/fpls.2018.00413
[57]

Chen Q, Wu K, Tang Z, Guo Q, Guo X, et al. 2017. Exogenous ethylene enhanced the cadmium resistance and changed the alkaloid biosynthesis in Catharanthus roseus seedlings. Acta Physiologiae Plantarum 39:267

doi: 10.1007/s11738-017-2567-6
[58]

Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100:681−97

doi: 10.1093/aob/mcm079
[59]

Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J. 2007. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiology 144:1680−89

doi: 10.1104/pp.107.096115
[60]

Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, et al. 2008. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiology 146:952−64

doi: 10.1104/pp.107.115691
[61]

Rehman M, Saeed MS, Fan X, Salam A, Munir R, et al. 2023. The multifaceted role of jasmonic acid in plant stress mitigation: an overview. Plants 12:3982

doi: 10.3390/plants12233982
[62]

Cui Y, Mao R, Chen J, Guo Z. 2019. Regulation mechanism of MYC family transcription factors in jasmonic acid signalling pathway on taxol biosynthesis. International Journal of Molecular Sciences 20:1843

doi: 10.3390/ijms20081843
[63]

Pei T, Ma P, Ding K, Liu S, Jia Y, et al. 2018. SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Journal of Experimental Botany 69:1663−78

doi: 10.1093/jxb/erx484
[64]

Nyanasaigran L, Ramasamy S, Gautam A, Guleria P, Kumar V, et al. 2024. Methyl jasmonate elicitation improves the growth performance and biosynthesis of antioxidant metabolites in Portulaca oleracea through ROS modulation. Industrial Crops and Products 216:118709

doi: 10.1016/j.indcrop.2024.118709
[65]

Es-sbihi FZ, Hazzoumi Z, Aasfar A, Amrani Joutei K. 2021. Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chemical and Biological Technologies in Agriculture 8:25

doi: 10.1186/s40538-021-00221-y
[66]

Ding Y, Sun T, Ao K, Peng Y, Zhang Y, et al. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454−167.e15

doi: 10.1016/j.cell.2018.03.044
[67]

Liu Y, Sun T, Sun Y, Zhang Y, Radojičić A, et al. 2020. Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity. The Plant Cell 32:4002−16

doi: 10.1105/tpc.20.00499
[68]

Ding M, Xie Y, Zhang Y, Cai X, Zhang B, et al. 2023. Salicylic acid regulates phenolic acid biosynthesis via SmNPR1-SmTGA2/SmNPR4 modules in Salvia miltiorrhiza. Journal of Experimental Botany 74:5736−51

doi: 10.1093/jxb/erad302
[69]

Ding M, Zhang B, Zhang S, Hao R, Xia Y, et al. 2023. The SmNPR4-SmTGA5 module regulates SA-mediated phenolic acid biosynthesis in Salvia miltiorrhiza hairy roots. Horticulture Research 10:uhad066

doi: 10.1093/hr/uhad066
[70]

Bai T, Li C, Ma F, Shu H, Han M. 2009. Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta rehd. Journal of Plant Growth Regulation 28:358−66

doi: 10.1007/s00344-009-9104-9
[71]

Largia MJV, Pothiraj G, Shilpha J, Ramesh M. 2015. Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell, Tissue and Organ Culture (PCTOC) 122:9−20

doi: 10.1007/s11240-015-0745-z
[72]

Tuan PA, Chung E, Thwe AA, Li X, Kim YB, et al. 2015. Transcriptional profiling and molecular characterization of astragalosides, calycosin, and calycosin-7-O-β-D-glucoside biosynthesis in the hairy roots of Astragalus membranaceus in response to methyl jasmonate. Journal of Agricultural and Food Chemistry 63:6231−40

doi: 10.1021/acs.jafc.5b01822
[73]

Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, et al. 2005. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167−71

doi: 10.1038/nature03227
[74]

Vriet C, Russinova E, Reuzeau C. 2013. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant Kingdom. Molecular Plant 6:1738−57

doi: 10.1093/mp/sst096
[75]

López-Gómez M, Hidalgo-Castellanos J, Lluch C, Herrera-Cervera JA. 2016. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiology and Biochemistry 108:212−21

doi: 10.1016/j.plaphy.2016.07.017
[76]

Wang M, Cai C, Li Y, Tao H, Meng F, et al. 2023. Brassinosteroids fine-tune secondary and primary sulfur metabolism through BZR1-mediated transcriptional regulation. Journal of Integrative Plant Biology 65:1153−69

doi: 10.1111/jipb.13442
[77]

Parrey ZA, Shah SH, Mohammad F, Siddiqui MH, Alamri S, et al. 2023. Exogenous epibrassinolide application improves essential oil biosynthesis and trichome development in peppermint via modulating growth and physicochemical processes. Scientific Reports 13:12924

doi: 10.1038/s41598-023-40210-9
[78]

Guo C, Chen Y, Wu D, Du Y, Wang M, et al. 2022. Transcriptome analysis reveals an essential role of exogenous brassinolide on the alkaloid biosynthesis pathway in Pinellia ternata. International Journal of Molecular Sciences 23:10898

doi: 10.3390/ijms231810898
[79]

Wen Y, Lei AQ, Hashem A, Abd_Allah EF, Wu QS, et al. 2024. Foliar spraying of brassinolide affects leaf quality and secondary metabolite profiles of cold-stressed tea plants. Horticulturae 10:639

doi: 10.3390/horticulturae10060639
[80]

Batista-Silva W, de Paiva Gonçalves J, Siqueira JA, Martins AO, Ribeiro DM, et al. 2024. Auxin metabolism and the modulation of plant growth. Environmental and Experimental Botany 226:105917

doi: 10.1016/j.envexpbot.2024.105917
[81]

Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271−76

doi: 10.1038/35104500
[82]

Zhang S, Gao Y, Wang W, Qiu L, Zhao Z, et al. 2025. Auxin promotes the production of phenolic acids and tanshinones in Salvia miltiorrhiza hairy roots via auxin signaling and transcriptional pathways. Plant Cell, Tissue and Organ Culture (PCTOC) 160:35

doi: 10.1007/s11240-025-02988-6
[83]

Yan M, Yan Y, Wang P, Wang Y, Piao X, et al. 2023. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in Panax ginseng indicates its possible roles in root development. Plants 12:3943

doi: 10.3390/plants12233943
[84]

Xiao S, Chu Y, Chen Y, Zhao Q, Liao B, et al. 2022. Genome-wide identification and transcriptional profiling analysis of PIN/PILS auxin transporter gene families in Panax ginseng. Chinese Herbal Medicines 14:48−57

doi: 10.1016/j.chmed.2021.08.001
[85]

Mir AR, Alam P, Hayat S. 2022. Auxin regulates growth, photosynthetic efficiency and mitigates copper induced toxicity via modulation of nutrient status, sugar metabolism and antioxidant potential in Brassica juncea. Plant Physiology and Biochemistry 185:244−59

doi: 10.1016/j.plaphy.2022.06.006
[86]

Ahmad A, Ali H, Khan H, Begam A, Khan S, et al. 2020. Effect of gibberellic acid on production of biomass, polyphenolics and steviol glycosides in adventitious root cultures of Stevia rebaudiana (bert.). Plants 9:420

doi: 10.3390/plants9040420
[87]

Chen R, Cao Y, Wang W, Li Y, Wang D, et al. 2021. Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza. Plant Science 310:110993

doi: 10.1016/j.plantsci.2021.110993
[88]

Hao X, Pu Z, Cao G, You D, Zhou Y, et al. 2020. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. Journal of Advanced Research 23:1−12

doi: 10.1016/j.jare.2020.01.012
[89]

Abbasi BH, Stiles AR, Saxena PK, Liu CZ. 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Applied Biochemistry and Biotechnology 168:2057−66

doi: 10.1007/s12010-012-9917-z
[90]

Li L, Liu M, Shi K, Yu Z, Zhou Y, et al. 2019. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides. International Journal of Molecular Sciences 20:4030

doi: 10.3390/ijms20164030
[91]

Zhang X, Xiong Y, Wang Y, Wu C, Teixeira da Silva JA, et al. 2025. 6-benzyladenine, a cytokinin, promotes the accumulation of essential oil, flavonoids, and phenolics in Santalum album heartwood by interacting with other hormones. Industrial Crops and Products 223:120285

doi: 10.1016/j.indcrop.2024.120285
[92]

Qiao J, Luo Z, Li Y, Ren G, Liu C, et al. 2017. Effect of abscisic acid on accumulation of five active components in root of Glycyrrhiza uralensis. Molecules 22:1982

doi: 10.3390/molecules22111982
[93]

Wang Y, Wang Y, Pan A, Miao Q, Han Y, et al. 2024. CaERF1- mediated ABA signal positively regulates camptothecin biosynthesis by activating the iridoid pathway in Camptotheca acuminata. International Journal of Biological Macromolecules 261:129560

doi: 10.1016/j.ijbiomac.2024.129560
[94]

Li X, Wang XH, Qiang W, Zheng HJ, ShangGuan LY, et al. 2022. Transcriptome revealing the dual regulatory mechanism of ethylene on the rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. Journal of Plant Research 135:485−500

doi: 10.1007/s10265-022-01387-8
[95]

Fang R, Wu F, Zou A, Zhu Y, Zhao H, et al. 2016. Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Molecular Biology 90:345−58

doi: 10.1007/s11103-015-0421-z
[96]

Tripathi A, Chauhan N, Mukhopadhyay P. 2024. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. Physiology and Molecular Biology of Plants 30:543−57

doi: 10.1007/s12298-024-01441-w
[97]

Kandoudi W, Tavaszi-Sárosi S, Németh-Zámboriné E. 2023. Inducing the production of secondary metabolites by foliar application of methyl jasmonate in peppermint. Plants 12:2339

doi: 10.3390/plants12122339
[98]

Dai HY, Zhang XK, Bi Y, Chen D, Long XN, et al. 2024. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. Frontiers in Plant Science 15:1360919

doi: 10.3389/fpls.2024.1360919
[99]

Zhang W, Zhang J, Fan Y, Dong J, Gao P, et al. 2024. RNA sequencing analysis reveals PgbHLH28 as the key regulator in response to methyl jasmonate-induced saponin accumulation in Platycodon grandiflorus. Horticulture Research 11:uhae058

doi: 10.1093/hr/uhae058
[100]

Ahmed HS, Moawad AS, AbouZid SF, Owis AI. 2020. Salicylic acid increases flavonolignans accumulation in the fruits of hydroponically cultured Silybum marianum. Saudi Pharmaceutical Journal 28:593−98

doi: 10.1016/j.jsps.2020.03.011
[101]

Stasińska-Jakubas M, Hawrylak-Nowak B, Dresler S, Wójciak M, Rubinowska K. 2023. Application of chitosan lactate, selenite, and salicylic acid as an approach to induce biological responses and enhance secondary metabolism in Melissa officinalis L. Industrial Crops and Products 205:117571

doi: 10.1016/j.indcrop.2023.117571
[102]

Mirzamohammad E, Alirezalu A, Alirezalu K, Norozi A, Ansari A. 2021. Improvement of the antioxidant activity, phytochemicals, and cannabinoid compounds of Cannabis sativa by salicylic acid elicitor. Food Science & Nutrition 9:6873−81

doi: 10.1002/fsn3.2643
[103]

Wang JW, Kong FX, Tan RX. 2002. Improved artemisinin accumulation in hairy root cultures of Artemisia annua by (22S, 23S)-homobrassinolide. Biotechnology Letters 24(19):1573−77

doi: 10.1023/A:1020377130657
[104]

He W, Liu H, Wu Z, Miao Q, Hu X, et al. 2024. The AaBBX21–AaHY5 module mediates light-regulated artemisinin biosynthesis in Artemisia annua L. Journal of Integrative Plant Biology 66:1735−51

doi: 10.1111/jipb.13708
[105]

Li M, Zhu Y, Li S, Zhang W, Yin C, et al. 2022. Regulation of phytohormones on the growth and development of plant root hair. Frontiers in Plant Science 13:865302

doi: 10.3389/fpls.2022.865302
[106]

Lv B, Zhu J, Kong X, Ding Z. 2021. Light participates in the auxin-dependent regulation of plant growth. Journal of Integrative Plant Biology 63:819−22

doi: 10.1111/jipb.13036
[107]

Zhang XN, Liu J, Liu Y, Wang Y, Abozeid A, et al. 2018. Metabolomics analysis reveals that ethylene and methyl jasmonate regulate different branch pathways to promote the accumulation of terpenoid indole alkaloids in Catharanthus roseus. Journal of Natural Products 81:335−42

doi: 10.1021/acs.jnatprod.7b00782
[108]

Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46

doi: 10.1016/j.tplants.2022.12.007
[109]

Kim S, Kim TH, Jeong YJ, Park SH, Park SC, et al. 2021. Synergistic effect of methyl jasmonate and abscisic acid co-treatment on avenanthramide production in germinating oats. International Journal of Molecular Sciences 22:4779

doi: 10.3390/ijms22094779
[110]

Weathers PJ, Bunk G, McCoy MC. 2005. The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cellular & Developmental Biology - Plant 41:47−53

doi: 10.1079/IVP2004604
[111]

Kim H, Seomun S, Yoon Y, Jang G. 2021. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy 11:1886

doi: 10.3390/agronomy11091886
[112]

Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X. 2020. Role of ethylene crosstalk in seed germination and early seedling development: a review. Plant Physiology and Biochemistry 151:124−31

doi: 10.1016/j.plaphy.2020.03.016
[113]

Waldie T, Leyser O. 2018. Cytokinin targets auxin transport to promote shoot branching. Plant Physiology 177:803−18

doi: 10.1104/pp.17.01691
[114]

Jiao L, Bian L, Luo Z, Li Z, Xiu C, et al. 2022. Enhanced volatile emissions and anti-herbivore functions mediated by the synergism between jasmonic acid and salicylic acid pathways in tea plants. Horticulture Research 9:uhac144

doi: 10.1093/hr/uhac144
[115]

Cai H, Liu K, Ma S, Su H, Yang J, et al. 2025. Gibberellin and cytokinin signaling antagonistically control female-germline cell specification in Arabidopsis. Developmental Cell 60:706−722.e7

doi: 10.1016/j.devcel.2024.11.009
[116]

Sukito A, Tachibana S. 2016. Effect of methyl jasmonate and salycilic acid synergism on enhancement of bilobalide and ginkgolide production by immobilized cell cultures of Ginkgo biloba. Bioresources and Bioprocessing 3:24

doi: 10.1186/s40643-016-0101-0
[117]

Wang H, Zhang G, Gao Z, Sui C, Ji H, et al. 2021. Transcriptome profiling of Bupleurum chinense DC. root provides new insights into the continuous inflorescence removal induced improvements to root growth and saikosaponin biosynthesis. Industrial Crops and Products 160:113085

doi: 10.1016/j.indcrop.2020.113085
[118]

Ullah C, Schmidt A, Reichelt M, Tsai CJ, Gershenzon J. 2022. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytologist 235:701−17

doi: 10.1111/nph.18148
[119]

Fukazawa J, Mori K, Ando H, Mori R, Kanno Y, et al. 2023. Jasmonate inhibits plant growth and reduces gibberellin levels via microRNA5998 and transcription factor MYC2. Plant Physiology 193:2197−214

doi: 10.1093/plphys/kiad453
[120]

Nomoto M, Skelly MJ, Itaya T, Mori T, Suzuki T, et al. 2021. Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Reports 37:110125

doi: 10.1016/j.celrep.2021.110125
[121]

Zhou J, Mu Q, Wang X, Zhang J, Yu H, et al. 2022. Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. The Plant Cell 34:3066−87

doi: 10.1093/plcell/koac139
[122]

Fonouni-Farde C, Kisiala A, Brault M, Neil Emery RJ, Diet A, et al. 2017. DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiology 175:1795−806

doi: 10.1104/pp.17.00919
[123]

Li X, Cai K, Fan Z, Wang J, Wang L, et al. 2022. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). Plant Science 325:111461

doi: 10.1016/j.plantsci.2022.111461
[124]

Yu X, Xu Y, Yan S. 2021. Salicylic acid and ethylene coordinately promote leaf senescence. Journal of Integrative Plant Biology 63:823−27

doi: 10.1111/jipb.13074
[125]

Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. 2005. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. The Plant Journal 44:314−33

doi: 10.1111/j.1365-313X.2005.02530.x
[126]

Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, et al. 2024. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. New Phytologist 242:2059−76

doi: 10.1111/nph.19737
[127]

Wang QY, Yang L, Ge N, Jia JS, Huang RM, et al. 2023. Exogenous abscisic acid prolongs the dormancy of recalcitrant seed of Panax notoginseng. Frontiers in Plant Science 14:1054736

doi: 10.3389/fpls.2023.1054736
[128]

Huang X, Hou L, Meng J, You H, Li Z, et al. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant 11:970−82

doi: 10.1016/j.molp.2018.05.001
[129]

Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, et al. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell 23:2169−83

doi: 10.1105/tpc.111.087395
[130]

Shinshi H. 2008. Ethylene-regulated transcription and crosstalk with jasmonic acid. Plant Science 175:18−23

doi: 10.1016/j.plantsci.2008.03.017
[131]

Chen CL, Wu D, Li QK, Liu XH, Niu XG, et al. 2024. Methyl jasmonate enhances rice tolerance to alkaline stress via the auxin pathway. Plant Stress 14:100612

doi: 10.1016/j.stress.2024.100612
[132]

Gomi K. 2020. Jasmonic acid: an essential plant hormone. International Journal of Molecular Sciences 21:1261

doi: 10.3390/ijms21041261
[133]

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, et al. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365:498−502

doi: 10.1126/science.aaw1720
[134]

Shi A, Liu J, Zou S, Rensing C, Zhao Y, et al. 2024. Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Science of the Total Environment 947:174585

doi: 10.1016/j.scitotenv.2024.174585
[135]

Deng H, Li Q, Cao R, Ren Y, Wang G, et al. 2023. Overexpression of SmMYC2 enhances salt resistance in Arabidopsis thaliana and Salvia miltiorrhiza hairy roots. Journal of Plant Physiology 280:153862

doi: 10.1016/j.jplph.2022.153862