[1]

Versteven M, Vanden Broeck L, Geurten B, Zwarts L, Decraecker L, et al. 2017. Hearing regulates Drosophila aggression. Proceedings of the National Academy of Sciences of the United States of America 114:1958−63

doi: 10.1073/pnas.1605946114
[2]

Qing L, Gao C, Ji A, Lü X, Zhou L, et al. 2021. Association of mineralocorticoid receptor gene (NR3C2) hypermethylation in adult males with aggressive behavior. Behavioural Brain Research 398:112980

doi: 10.1016/j.bbr.2020.112980
[3]

Krackow S. 2005. Agonistic onset during development differentiates wild house mouse males (Mus domesticus). Naturwissenschaften 92:78−81

doi: 10.1007/s00114-004-0590-0
[4]

Sakura M, Watanabe T, Aonuma H. 2012. Aggressive behavior of the white-eye mutant crickets, Gryllus bimaculatus. Acta Biologica Hungarica 63:69−74

doi: 10.1556/ABiol.63.2012.Suppl.2.7
[5]

Rodríguez-Manzo G, González-Morales E. 2020. Endocannabinoids mediate long-lasting behavioural and physiological changes in male rats induced by the repeated activation of the mesolimbic system by copulation to satiety. Behavioural Brain Research 383:112510

doi: 10.1016/j.bbr.2020.112510
[6]

Dierick HA, Greenspan RJ. 2006. Molecular analysis of flies selected for aggressive behavior. Nature Genetics 38:1023−31

doi: 10.1038/ng1864
[7]

Galli MC, Lagoda ME, Gottardo F, Contiero B, Boyle LA. 2023. The role of environmental enrichment and back fat depth in the intensity of aggressive behavior performed by sows during the establishment of the dominance hierarchy. Animals 13:825

doi: 10.3390/ani13050825
[8]

Tuchscherer M, Puppe B, Tuchscherer A, Kanitz E. 1998. Effects of social status after mixing on immune, metabolic, and endocrine responses in pigs. Physiology & Behavior 64(3):353−60

doi: 10.1016/S0031-9384(98)00084-5
[9]

D’Eath RB, Turner SP, Kurt E, Evans G, Thölking L, et al. 2010. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal 4:604−16

doi: 10.1017/s1751731109991406
[10]

Jia W, Wu X, Shi L. 2023. Spatiotemporal variation of residual cortisol obstructs nutrient acquisition in animal-derived foods by perturbing glycerophospholipid metabolism. Journal of Agricultural and Food Chemistry 71(23):9097−109

doi: 10.1021/acs.jafc.3c02397
[11]

Nass SR, Lark ARS, Hahn YK, McLane VD, Ihrig TM, et al. 2021. HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Hormones and Behavior 133:105008

doi: 10.1016/j.yhbeh.2021.105008
[12]

Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, et al. 2015. Estrogen involvement in social behavior in rodents: rapid and long-term actions. Hormones and Behavior 74:53−76

doi: 10.1016/j.yhbeh.2015.05.023
[13]

DeVries AC, Glasper ER, Detillion CE. 2003. Social modulation of stress responses. Physiology & Behavior 79:399−407

doi: 10.1016/s0031-9384(03)00152-5
[14]

Böhnke R, Bertsch K, Kruk MR, Naumann E. 2010. The relationship between basal and acute HPA axis activity and aggressive behavior in adults. Journal of Neural Transmission 117:629−37

doi: 10.1007/s00702-010-0391-x
[15]

Flores RJ, Cruz B, Uribe KP, Correa VL, Arreguin MC, et al. 2020. Estradiol promotes and progesterone reduces anxiety-like behavior produced by nicotine withdrawal in female rats. Psychoneuroendocrinology 119:104694

[16]

Haemisch A, Voss T, Gärtner K. 1994. Effects of environmental enrichment on aggressive behavior, dominance hierarchies, and endocrine states in male DBA/2J mice. Physiology & Behavior 56(5):1041−48

doi: 10.1016/0031-9384(94)90341-7
[17]

Davies S, Beck ML, Sewall KB. 2018. Territorial aggression in urban and rural Song Sparrows is correlated with corticosterone, but not testosterone. Hormones and Behavior 98:8−15

doi: 10.1016/j.yhbeh.2017.11.010
[18]

Turner SP, Roehe R, D'eath RB, Ison SH, Farish M, et al. 2009. Genetic validation of postmixing skin injuries in pigs as an indicator of aggressiveness and the relationship with injuries under more stable social conditions. Journal of Animal Science 87(10):3076−82

doi: 10.2527/jas.2008-1558
[19]

Bushby EV, Dye L, Collins LM. 2021. Is magnesium supplementation an effective nutritional method to reduce stress in domestic pigs? A systematic review. Frontiers in Veterinary Science 12:596205

doi: 10.3389/fvets.2020.596205
[20]

Weller JE, Camerlink I, Turner SP, Farish M, Arnott G. 2019. Socialisation and its effect on play behaviour and aggression in the domestic pig (Sus scrofa). Scientific Reports 9:4180

doi: 10.1038/s41598-019-40980-1
[21]

Zhang C, Yang H, Xu Q, Liu M, Chao X, et al. 2023. Comprehensive Genome and Transcriptome Analysis Identifies SLCO3A1 Associated with Aggressive Behavior in Pigs. Biomolecules 13:1381

doi: 10.3390/biom13091381
[22]

Lutz V, Stratz P, Preuß S, Tetens J, Grashorn MA, et al. 2017. A genome-wide association study in a large F2-cross of laying hens reveals novel genomic regions associated with feather pecking and aggressive pecking behavior. Genetics Selection Evolution 49:18

doi: 10.1186/s12711-017-0287-4
[23]

Song S, Oh DY, Cho GJ, Kim DH, Park YS, et al. 2017. Targeted next-generation sequencing for identifying genes related to horse temperament. Genes & Genomics 39:1325−33

doi: 10.1007/s13258-017-0597-5
[24]

Stukenborg A, Traulsen I, Puppe B, Presuhn U, Krieter J. 2011. Agonistic behaviour after mixing in pigs under commercial farm conditions. Applied Animal Behaviour Science 129:28−35

doi: 10.1016/j.applanim.2010.10.004
[25]

Shen C, Tong X, Chen R, Gao S, Liu X, et al. 2020. Identifying blood-based biomarkers associated with aggression in weaned pigs after mixing. Applied Animal Behaviour Science 224:104927

doi: 10.1016/j.applanim.2019.104927
[26]

Liu M, Chen J, Liu S, Zhang C, Chao X, et al. 2024. LH-stimulated periodic lincRNA HEOE regulates follicular dynamics and influences estrous cycle and fertility via miR-16-ZMAT3 and PGF2α in pigs. International Journal of Biological Macromolecules 281:136426

doi: 10.1016/j.ijbiomac.2024.136426
[27]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[28]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[29]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[30]

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43:e47

doi: 10.1093/nar/gkv007
[31]

Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322

doi: 10.1093/nar/gkr483
[32]

Zhang Y, He K, Guo X, Jiang J, Qian L, et al. 2023. Transcriptomic Profiling of Fusarium pseudograminearum in Response to Carbendazim, Pyraclostrobin, Tebuconazole, and Phenamacril. Journal of Fungi 9:334

doi: 10.3390/jof9030334
[33]

Yang F, Wang T, Yan P, Li W, Kong J, et al. 2022. Identification of pyroptosis-related subtypes and establishment of prognostic model and immune characteristics in asthma. Frontiers in Immunolog 13:937832

doi: 10.3389/fimmu.2022.937832
[34]

Hänzelmann S, Castelo, R. & Guinney, J. 2013. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14:7

doi: 10.1186/1471-2105-14-7
[35]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284−87

doi: 10.1089/omi.2011.0118
[36]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[37]

Lyu F, Han F, Ge C, Mao W, Chen L, et al. 2023. OmicStudio: A composable bioinformatics cloud platform with real‐time feedback that can generate high‐quality graphs for publication. iMeta 2:e85

[38]

Kästner N, Richter SH, Urbanik S, Kunert J, Waider J, et al. 2019. Brain serotonin deficiency affects female aggression. Scientific Reports 9:1366

doi: 10.1038/s41598-018-37613-4
[39]

Ding L, Xu X, Li C, Wang Y, Xia X, et al. 2021. Glutaminase in microglia: a novel regulator of neuroinflammation. Brain, Behavior, and Immunity 92:139−56

doi: 10.1016/j.bbi.2020.11.038
[40]

Bodineau C, Tomé M, del Socorro Murdoch P, Durán RV. 2022. Glutamine, MTOR and autophagy: a multiconnection relationship. Autophagy 18:2749−50

doi: 10.1080/15548627.2022.2062875
[41]

Shimajiri Y, Oonishi T, Ozaki K, Kainou K, Akama K. 2013. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotechnol J 11:594−604

doi: 10.1111/pbi.12050
[42]

Magzal F, Turroni S, Fabbrini M, Barone M, Vitman Schorr A, et al. 2023. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Frontiers in Nutrition 10:1234549

doi: 10.3389/fnut.2023.1234549
[43]

Needham BD, Adame MD, Serena G, Rose DR, Preston GM, et al. 2021. Plasma and fecal metabolite profiles in autism spectrum disorder. Biological Psychiatry 89:451−62

doi: 10.1016/j.biopsych.2020.09.025
[44]

Doudet D, Hommer D, Higley JD, Andreason PJ, Moneman R, et al. 1995. Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys. The American Journal of Psychiatry 152(12):1782−7

doi: 10.1176/ajp.152.12.1782
[45]

Asellus P, Nordström P, Jokinen J. 2010. Cholesterol and CSF 5-HIAA in attempted suicide. Journal of Affective Disorders 125:388−92

doi: 10.1016/j.jad.2010.02.111
[46]

Deng H, He L, Wang C, Zhang T, Guo H, et al. 2022. Altered gut microbiota and its metabolites correlate with plasma cytokines in schizophrenia inpatients with aggression. BMC Psychiatry 22:629

doi: 10.1186/s12888-022-04255-w
[47]

Hagenbeek FA, Roetman PJ, Pool R, Kluft C, Harms AC, et al. 2020. Urinary amine and organic acid metabolites evaluated as markers for childhood aggression: The ACTION biomarker study. rontiers in Psychiatry 11:165

doi: 10.3389/fpsyt.2020.00165
[48]

Bubak AN, Renner KJ, Swallow JG. 2014. Heightened serotonin influences contest outcome and enhances expression of high-intensity aggressive behaviors. Behavioural Brain Research 259:137−42

doi: 10.1016/j.bbr.2013.10.050
[49]

Tierney A, Mangiamele L. 2001. Effects of serotonin and serotonin analogs on posture and agonistic behavior in crayfish. Journal of Comparative Physiology A 187:757−67

doi: 10.1007/s00359-001-0246-x
[50]

Mattson MP, Arumugam TV. 2018. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metabolism 27:1176−99

doi: 10.1016/j.cmet.2018.05.011
[51]

Chebotareva N, Vinogradov A, McDonnell V, Zakharova NV, Indeykina MI, et al. 2021. Urinary protein and peptide markers in chronic kidney disease. International Journal of Molecular Sciences 22:12123

doi: 10.3390/ijms222212123
[52]

Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, et al. 2011. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 20:1553−59

doi: 10.1001/jama.2011.451
[53]

Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, et al. 2020. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nature Medicine 26:379−86

doi: 10.1038/s41591-020-0755-1
[54]

Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, et al. 2023. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Research Bulletin 195:37−46

doi: 10.1016/j.brainresbull.2023.02.003
[55]

Chen Y, Qin Q, Zhao W, Luo D, Huang Y, et al. 2022. Carnosol reduced pathogenic protein aggregation and cognitive impairment in neurodegenerative diseases models via improving proteostasis and ameliorating mitochondrial disorders. Journal of Agricultural and Food Chemistry 70(34):10490−505

doi: 10.1021/acs.jafc.2c02665
[56]

Samarghandian S, Azimi-Nezhad M, Borji A, Samini M, Farkhondeh T. 2017. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complementary and Alternative Medicine 17:249

doi: 10.1186/s12906-017-1753-9
[57]

Masuda T, Kirikihira T, Takeda Y. 2005. Recovery of antioxidant activity from carnosol quinone: antioxidants obtained from a water-promoted conversion of carnosol quinone. Journal of Agricultural and Food Chemistry 53(17):6831−34

doi: 10.1021/jf050685s
[58]

Cordero MI, Ansermet F, Sandi C. 2013. Long-term programming of enhanced aggression by peripuberty stress in female rats. Psychoneuroendocrinology 38:2758−69

doi: 10.1016/j.psyneuen.2013.07.005
[59]

Kotwica G, Kamińska B, Franczak A, Kurowicka B, Staszkiewicz J, et al. 2004. The effect of oxytocin on cortisol and corticosterone secretion in cyclic gilts-in vivo and in vitro studies. Reproductive Biology 4:35−50

[60]

Verdon M, Morrison RS, Rice M, Hemsworth PH. 2016. Individual variation in sow aggressive behavior and its relationship with sow welfare. Journal of Animal Science 94:1203−14

doi: 10.2527/jas.2015-0006
[61]

Li J, Li X, Liu H, Li J, Han Q, et al. 2021. Effects of music stimulus on behavior response, cortisol level, and horizontal immunity of growing pigs. Journal of Animal Science 99:skab043

doi: 10.1093/jas/skab043
[62]

Cheng Y, Azad MAK, Ding S, Liu Y, Blachier F, et al. 2023. Metabolomics analysis reveals the potential relationship between sow colostrum and neonatal serum metabolites in different pig breeds. Molecular Nutrition & Food Research 67:2200677

doi: 10.1002/mnfr.202200677
[63]

Karimi M, Petkova V, Asara JM, Griffin MJ, Sellke FW, et al. 2020. Metabolomics and the pig model reveal aberrant cardiac energy metabolism in metabolic syndrome. Scientific Reports 10:3483

doi: 10.1038/s41598-020-60387-7
[64]

Wang X, Li P, Chen X, Cui W, Ni S, et al. 2025. Integrated microbiome and metabolomics analysis of spoilage characteristics of modified atmosphere packaged pork. Food Research International 203:115827

doi: 10.1016/j.foodres.2025.115827
[65]

Wang Y, Fu AKY, Ip NY. 2022. Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms. The FEBS Journal 289:2202−18

doi: 10.1111/febs.15878
[66]

Nordman JC, Ma X, Gu Q, Potegal M, Li H, et al. 2020. Potentiation of divergent medial amygdala pathways drives experience-dependent aggression escalation. The Journal of Neuroscience 40:4858−80

doi: 10.1523/JNEUROSCI.0370-20.2020
[67]

Stagkourakis S, Spigolon G, Liu G, Anderson DJ. 2020. Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proceedings of the National Academy of Sciences of the United States of America 117:25789−99

doi: 10.1073/pnas.2011782117
[68]

Schroor MM, Mokhtar FBA, Plat J, Mensink RP. 2021. Associations between SNPs in Intestinal Cholesterol Absorption and Endogenous Cholesterol Synthesis Genes with Cholesterol Metabolism. Biomedicines 9:1475

doi: 10.3390/biomedicines9101475
[69]

Iaea DB, Spahr ZR, Singh RK, Chan RB, Zhou B, et al. 2020. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1865:158609

doi: 10.1016/j.bbalip.2020.158609
[70]

Yoto A, Murao S, Motoki M, Yokoyama Y, Horie N, et al. 2012. Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids 43:1331−7

doi: 10.1007/s00726-011-1206-6
[71]

Cao Q, Wang J, Hao Y, Zhao F, Fu R, et al. 2022. Exercise ameliorates fluoride-induced anxiety- and depression-like behavior in mice: role of GABA. Biological Trace Element Research 200:678−88

doi: 10.1007/s12011-021-02678-2
[72]

Jager A, Amiri H, Bielczyk N, van Heukelum S, Heerschap A, et al. 2020. Cortical control of aggression: GABA signalling in the anterior cingulate cortex. European Neuropsychopharmacology 30:5−16

doi: 10.1016/j.euroneuro.2017.12.007
[73]

Skilbeck KJ, Johnston GAR, Hinton T. 2010. Stress and GABAA receptors. Journal of Neurochemistry 112:1115−30

doi: 10.1111/j.1471-4159.2009.06539.x
[74]

Reznikov LR, Reagan LP, Fadel JR. 2009. Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Research 1256:61−68

doi: 10.1016/j.brainres.2008.12.022
[75]

Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, et al. 2023. Neural basis for fasting activation of the hypothalamic–pituitary–adrenal axis. Nature 620:154−62

doi: 10.1038/s41586-023-06358-0
[76]

Naderipoor P, Amani M, Abedi A, Sakhaie N, Sadegzadeh F, et al. 2021. Alterations in the behavior, cognitive function, and BDNF level in adult male rats following neonatal blockade of GABA-A receptors. Brain Research Bulletin 169:35−42

doi: 10.1016/j.brainresbull.2021.01.006
[77]

Liu XJ, Wang HJ, Wang XY, Ning YX, Gao J. 2021. GABABR1 in DRN mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Neurochemistry International 150:105180

doi: 10.1016/j.neuint.2021.105180
[78]

Lopes EF, Roberts BM, Siddorn RE, Clements MA, Cragg SJ. 2019. Inhibition of nigrostriatal dopamine release by striatal GABAA and GABAB receptors. The Journal of Neuroscience 39:1058−65

doi: 10.1523/JNEUROSCI.2028-18.2018
[79]

D’Eath RB. 2002. Individual aggressiveness measured in a resident-intruder test predicts the persistence of aggressive behaviour and weight gain of young pigs after mixing. Applied Animal Behaviour Science 77:267−83

doi: 10.1016/S0168-1591(02)00077-1