| [1] |
Ariizumi T, Shinozaki Y, Ezura H. 2013. Genes that influence yield in tomato. Breeding Science 63(1):3−13 doi: 10.1270/jsbbs.63.3 |
| [2] |
Rylski I. 1979. Effect of temperatures and growth regulators on fruit malformation in tomato. Scientia Horticulturae 10(1):27−35 doi: 10.1016/0304-4238(79)90066-9 |
| [3] |
Garg N, Cheema DS. 2011. Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions. Scientia Horticulturae 131:29−38 doi: 10.1016/j.scienta.2011.09.024 |
| [4] |
Zhang QB, Liu Y, Li H, Li TL. 2014. The expression analysis of WUSCHEL gene under high and low temperature in tomato seedling. Advanced Materials Research 941−944:1157−62 doi: 10.4028/www.scientific.net/amr.941-944.1157 |
| [5] |
Hosoki T, Ohta K, Asahira T. 1990. Cultivar differences in fruit malformation in tomato and its relationship with nutrient and hormone levels in shoot apices. Journal of the Japanese Society for Horticultural Science 58(4):971−76 doi: 10.2503/jjshs.58.971 |
| [6] |
Zhao JF, Qin JH, Sun YD, Liu YH. 2007. Research progress on malformed fruits in tomato. Journal of Anhui Agricultural Sciences 35(31):9880−81 (in Chinese) doi: 10.3969/j.issn.0517-6611.2007.31.039 |
| [7] |
Lippman Z, Tanksley SD. 2001. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158(1):413−22 doi: 10.1093/genetics/158.1.413 |
| [8] |
van der Knaap E, Lippman ZB, Tanksley SD. 2002. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics 104:241−47 doi: 10.1007/s00122-001-0776-1 |
| [9] |
Barrero LS, Cong B, Wu F, Tanksley SD. 2006. Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49(8):991−1006 doi: 10.1139/g06-059 |
| [10] |
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805−15 doi: 10.1016/S0092-8674(00)81703-1 |
| [11] |
Muños S, Ranc N, Botton E, Bérard A, Rolland S, et al. 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology 156(4):2244−54 doi: 10.1104/pp.111.173997 |
| [12] |
Fletcher JC, Meyerowitz EM. 2000. Cell signaling within the shoot meristem. Current opinion in plant biology 3(1):23−30 doi: 10.1016/S1369-5266(99)00033-3 |
| [13] |
Li H, Qi M, Sun M, Liu Y, Liu Y, et al. 2017. Tomato transcription factor SlWUS plays an important role in tomato flower and locule development. Frontiers in Plant Science 8:457 doi: 10.3389/fpls.2017.00457 |
| [14] |
Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E. 2007. Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. Journal of Experimental Botany 58(6):1339−49 doi: 10.1093/jxb/erl301 |
| [15] |
Cong B, Barrero LS, Tanksley SD. 2008. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature genetics 40(6):800−4 doi: 10.1038/ng.144 |
| [16] |
Holt AL, van Haperen JMA, Groot EP, Laux T. 2014. Signaling in shoot and flower meristems of Arabidopsis thaliana. Current Opinion in Plant Biology 17:96−102 doi: 10.1016/j.pbi.2013.11.011 |
| [17] |
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development 25(19):2025−30 doi: 10.1101/gad.17258511 |
| [18] |
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635−44 doi: 10.1016/S0092-8674(00)80700-X |
| [19] |
Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH, et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature genetics 47(7):784−92 doi: 10.1038/ng.3309 |
| [20] |
Wu Q, Xu F, Jackson D. 2018. All together now, a magical mystery tour of the maize shoot meristem. Current opinion in plant biology 45:26−35 doi: 10.1016/j.pbi.2018.04.010 |
| [21] |
Aguirre L, Hendelman A, Hutton SF, McCandlish DM, Lippman ZB. 2023. Idiosyncratic and dose-dependent epistasis drives variation in tomato fruit size. Science 382:315−20 doi: 10.1126/science.adi5222 |
| [22] |
Li T, Yang X, Yu Y, Si X, Zhai X, et al. 2018. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36(12):1160−3 doi: 10.1038/nbt.4273 |
| [23] |
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171(2):470−480.e8 doi: 10.1016/j.cell.2017.08.030 |
| [24] |
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature genetics 51(5):786−92 doi: 10.1038/s41588-019-0389-8 |
| [25] |
Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, et al. 2021. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nature Plants 7(4):419−27 doi: 10.1038/s41477-021-00898-x |
| [26] |
Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, et al. 2022. Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nature Plants 8(4):346−55 doi: 10.1038/s41477-022-01118-w |
| [27] |
Soyk S, Benoit M, Lippman ZB. 2020. New horizons for dissecting epistasis in crop quantitative trait variation. Annual Review of Genetics 54(1):287−307 doi: 10.1146/annurev-genet-050720-122916 |
| [28] |
Park SJ, Jiang K, Schatz MC, Lippman ZB. 2012. Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences 109(2):639−44 doi: 10.1073/pnas.1114963109 |
| [29] |
Ferrándiz C, Pelaz S, Yanofsky MF. 1999. Control of carpel and fruit development in Arabidopsis. Annual Review of Biochemistry 68(1):321−54 doi: 10.1146/annurev.biochem.68.1.321 |
| [30] |
Bollier N, Sicard A, Leblond J, Latrasse D, Gonzalez N, et al. 2018. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato. The Plant Cell 30(1):83−100 doi: 10.1105/tpc.17.00653 |
| [31] |
Liu X, Kim YJ, Müller R, Yumul RE, Liu C, et al. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. The Plant Cell 23(10):3654−70 doi: 10.1105/tpc.111.091538 |
| [32] |
Lenhard M, Bohnert A, Jürgens G, Laux T. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105(6):805−14 doi: 10.1016/S0092-8674(01)00390-7 |
| [33] |
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35−39 doi: 10.1038/346035a0 |
| [34] |
Sun B, Xu Y, Ng KH, Ito T. 2009. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes & Development 23(15):1791−804 doi: 10.1101/gad.1800409 |
| [35] |
Kwon CS, Chen C, Wagner D. 2005. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes & development 19(8):992−1003 doi: 10.1101/gad.1276305 |
| [36] |
Castañeda L, Giménez E, Pineda B, García-Sogo B, Ortiz-Atienza A, et al. 2022. Tomato CRABS CLAW paralogues interact with chromatin remodelling factors to mediate carpel development and floral determinacy. New Phytologist 234(3):1059−74 doi: 10.1111/nph.18034 |
| [37] |
Yamaguchi N, Huang J, Xu Y, Tanoi K, Ito T. 2017. Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nature communications 8(1):1125 doi: 10.1038/s41467-017-01252-6 |
| [38] |
Wang G, Wu Z, Sun B. 2025. KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity. The Plant Cell 37(1):koae312 doi: 10.1093/plcell/koae312 |
| [39] |
Fernández-Lozano A, Yuste-Lisbona FJ, Pérez-Martín F, Pineda B, Moreno V, et al. 2015. Mutation at the tomato EXCESSIVE NUMBER OF FLORAL ORGANS (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size. Plant Science 232:41−48 doi: 10.1016/j.plantsci.2014.12.007 |
| [40] |
Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, Bretones S, Ortíz-Atienza A, et al. 2020. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences 117(14):8187−95 doi: 10.1073/pnas.1913688117 |
| [41] |
Su D, Wen L, Xiang W, Shi Y, Lu W, et al. 2022. Tomato transcriptional repressor SlBES1.8 influences shoot apical meristem development by inhibiting the DNA binding ability of SlWUS. The Plant Journal 110(2):482−98 doi: 10.1111/tpj.15683 |
| [42] |
Song S, Huang B, Pan Z, Zhong Q, Yang Y, et al. 2022. The SlTPL3–SlWUS module regulates multi-locule formation in tomato by modulating auxin and gibberellin levels in the shoot apical meristem. Journal of integrative plant biology 64(11):2150−67 doi: 10.1111/jipb.13347 |
| [43] |
Plant AR, Larrieu A, Causier B. 2021. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. New Phytologist 231(3):963−73 doi: 10.1111/nph.17428 |
| [44] |
Hua B, Wu J, Han X, Bian X, Xu Z, et al. 2024. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. New Phytologist 241(3):1177−92 doi: 10.1111/nph.19391 |
| [45] |
Barten JHM, Scott JW, Kedar N, Elkind Y. 1992. Low temperatures induce rough blossom-end scarring of tomato fruit during early flower development. Journal of the American Society for Horticultural Science 117(2):298−303 doi: 10.21273/JASHS.117.2.298 |
| [46] |
Chen XZ, Li NF, Zhu JQ, Zhu LJ. 2006. Effects of night temperature at seedling stage on the occurrence of malformed fruit in tomato. Journal of Sichuan Agricultural University 24(3):309−312,354 (in Chinese) doi: 10.3969/j.issn.1000-2650.2006.03.015 |
| [47] |
Wu J, Sun W, Sun C, Xu C, Li S, et al. 2023. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. New Phytologist 237(6):2268−83 doi: 10.1111/nph.18699 |
| [48] |
Wu J, Li P, Li M, Zhu D, Ma H, et al. 2024. Heat stress impairs floral meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. Plant Communications 5(4):100790 doi: 10.1016/j.xplc.2023.100790 |
| [49] |
Uzun S. 2006. The quantitative effects of temperature and light on the number of leaves preceding the first fruiting inflorescence on the stem of tomato (Lycopersicon esculentum, Mill.) and aubergine (Solanum melongena L.). Scientia Horticulturae 109(2):142−46 doi: 10.1016/j.scienta.2006.04.006 |
| [50] |
Xu H, Li TL, Guo Y. 1997. Effects of nutrition during tomato seedling stage on the occurrence of malformed fruit. China Vegetables 1997(5):12−14 (in Chinese) doi: 10.19928/j.cnki.1000-6346.1997.05.003 |
| [51] |
Bai PW. 2010. Effects of different temperature and light treatments during the fruiting period on tomato quality. Thesis. Northwest A&F University, China. pp. 24−28 |
| [52] |
Srinivasulu B, Rao GS, Singh PK. 2020. Physiological disorders of tomato and their management. Journal of Pharmacognosy and Phytochemistry 9(3):2149−50 |
| [53] |
Meng SD, Han LL , Xiang HZ, Zhu MY, Feng Z, et al. 2024. Research progress on the mechanism of regulating the number of tomato loculesc. Acta Horticulturae Sinica 51(7):1649−64 doi: 10.16420/j.issn.0513-353x.2023-0449 |
| [54] |
SA A, Ei-azm NA, Ei-Kafafi EH. 2017. Effect of deficit irrigation levels and NPK fertilization rates on tomato growth, yield and fruits quality. Middle East Journal of Agriculture Research 6(3):587−604 |
| [55] |
Li Y, Sun M, Xiang H, Liu Y, Li H, et al. 2019. Low overnight temperature-induced gibberellin accumulation increases locule number in tomato. International journal of molecular sciences 20(12):3042 doi: 10.3390/ijms20123042 |
| [56] |
Ferigolo LF, Vicente MH, Correa JPO, Barrera-Rojas CH, Silva EM, et al. 2023. Gibberellin and miRNA156-targeted SlSBP genes synergistically regulate tomato floral meristem determinacy and ovary patterning. Development 150(21):dev201961 doi: 10.1242/dev.201961 |
| [57] |
Cheng L, Li R, Wang X, Ge S, Wang S, et al. 2022. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. The Plant cell 34(11):4388−408 doi: 10.1093/plcell/koac254 |
| [58] |
Zhang K, Wang R, Zi H, Li Y, Cao X, et al. 2018. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. The Plant Cell 30(2):324−46 doi: 10.1105/tpc.17.00705 |
| [59] |
Asahira T, Hosoki T, Shinya K. 1982. Regulation of low temperature-induced malformation of tomato fruit by plant growth regulators. Journal of the Japanese Society for Horticultural Science 50(4):468−74 doi: 10.2503/jjshs.50.468 |
| [60] |
Zhao J, Song W, Zhang X. 2024. Genetic and molecular regulation of fruit development in cucumber. New Phytologist 244(5):1742−49 doi: 10.1111/nph.20192 |
| [61] |
Che G, Gu R, Zhao J, Liu X, Song X, et al. 2020. Gene regulatory network controlling carpel number variation in cucumber. Development 147(7):dev184788 doi: 10.1242/dev.184788 |
| [62] |
Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, et al. 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics 48(7):785−91 doi: 10.1038/ng.3567 |
| [63] |
Bommert P, Nagasawa NS, Jackson D. 2013. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics 45(3):334−47 doi: 10.1038/ng.2534 |
| [64] |
Chen C, Xiao L, Li X, Du D. 2018. Comparative mapping combined with map-based cloning of the Brassica juncea genome reveals a candidate gene for multilocular rapeseed. Frontiers in Plant Science 9:1744 doi: 10.3389/fpls.2018.01744 |
| [65] |
Wang G, Zhang X, Huang W, Xu P, Lv Z, et al. 2021. Increased seed number per silique in Brassica juncea by deleting cis-regulatory region affecting BjCLV1 expression in carpel margin meristem. Plant Biotechnology Journal 19(11):2333−48 doi: 10.1111/pbi.13664 |
| [66] |
Monforte AJ, Diaz A, Caño-Delgado A, van der Knaap E. 2013. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany 65(16):4625−37 doi: 10.1093/jxb/eru017 |
| [67] |
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, et al. 2020. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnology Journal 18(12):2545−58 doi: 10.1111/pbi.13434 |