| [1] |
Mattioli R, Francioso A, Mosca L, Silva P. 2020. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25:3809 doi: 10.3390/molecules25173809 |
| [2] |
Hsu WY, Shipman PD, Thompson S. 2023. Molecular transformations and self-association in anthocyanin pigment patterns. Journal of Biosciences 49:4 doi: 10.1007/s12038-023-00367-x |
| [3] |
Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, et al. 2022. Anthocyanins: metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential. Antioxidants 12:48 doi: 10.3390/antiox12010048 |
| [4] |
Sendri N, Bhandari P. 2024. Anthocyanins: a comprehensive review on biosynthesis, structural diversity, and industrial applications. Phytochemistry Reviews 23:1913−74 doi: 10.1007/s11101-024-09945-9 |
| [5] |
Golovko TK. 2023. Plant anthocyanins: structure, biosynthesis regulation, functions, and ecology. Russian Journal of Plant Physiology 70:161 doi: 10.1134/S1021443723700292 |
| [6] |
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. 2021. Anthocyanins: from mechanisms of regulation in plants to health benefits in foods. Frontiers in Plant Science 12:748049 doi: 10.3389/fpls.2021.748049 |
| [7] |
Alam MA, Islam P, Subhan N, Rahman MM, Khan F, et al. 2021. Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochemistry Reviews 20:705−49 doi: 10.1007/s11101-021-09757-1 |
| [8] |
EFSA Panel on Dietetic Products, Nutrition and Allergies. 2010. Scientific Opinion on the substantiation of health claims related to various food (s)/food constituent (s) and protection of cells from premature ageing (ID 1668, 1917, 2515, 2527, 2530, 2575, 2580, 2591, 2620, 3178, 3179, 3180, 3181, 4329, 4415), antioxidant activity, antioxidant content and antioxidant properties (ID 857, 1306, 2515, 2527, 2530, 2575, 2580, 2591, 2629, 2728, 4327, 4365, 4380, 4390, 4394, 4455, 4464, 4507, 4694, 4705), protection of DNA, proteins and lipids from oxidative damage (ID 1196, 1211, 1216, 1306, 1312, 1440, 1441, 1666, 1668, 1692, 1900, 1914, 1948, 2023, 2158, 2517, 2522, 2527, 2575, 2591, 2620, 2637, 2639, 2663, 2860, 3079, 3276, 3564, 3818, 4324, 4329, 4351, 4397, 4416, 4424, 4507, 4527, 4528, 4542, 4611, 4629, 4659) and bioavailability of anthocyanins in black currants (ID 4220) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA Journal 8(10):1752 doi: 10.2903/j.efsa.2010.1752 |
| [9] |
Chaiyasut C, Sivamaruthi B, Kesika P, Subasankari K. 2018. Beneficial effects of anthocyanins against diabetes mellitus associated consequences-A mini review. Asian Pacific Journal of Tropical Biomedicine 8:471−77 doi: 10.4103/2221-1691.244137 |
| [10] |
Kapoor P, Tiwari A, Sharma S, Tiwari V, Sheoran B, et al. 2023. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: a systematic review via meta-analysis. Scientific Reports 13:1729 doi: 10.1038/s41598-023-28764-0 |
| [11] |
Liang A, Leonard W, Beasley JT, Fang Z, Zhang P, et al. 2024. Anthocyanins-gut microbiota-health axis: a review. Critical reviews in food science and nutrition 64:7563−88 doi: 10.1080/10408398.2023.2187212 |
| [12] |
Verediano TA, Stampini Duarte Martino H, Dias Paes MC, Tako E. 2021. Effects of anthocyanin on intestinal health: a systematic review. Nutrients 13:1331 doi: 10.3390/nu13041331 |
| [13] |
Kumkum R, Aston-Mourney K, McNeill BA, Hernández D, Rivera LR. 2024. Bioavailability of Anthocyanins: whole Foods versus Extracts. Nutrients 16:1403 doi: 10.3390/nu16101403 |
| [14] |
Bhan C, Anita, Kumar N. 2024. Sources, impacts and distribution of microplastics in different environmental matrices: a review. Environmental Sustainability 7:171−80 doi: 10.1007/s42398-024-00315-x |
| [15] |
Jiang B, Kauffman AE, Li L, McFee W, Cai B, et al. 2020. Health impacts of environmental contamination of micro-and nanoplastics: a review. Environmental Health and Preventive Medicine 25:1−15 doi: 10.1186/s12199-019-0839-z |
| [16] |
Amobonye A, Bhagwat P, Raveendran S, Singh S, Pillai S. 2021. Environmental impacts of microplastics and nanoplastics: a current overview. Frontiers in Microbiology 12:768297 doi: 10.3389/fmicb.2021.768297 |
| [17] |
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, et al. 2023. Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters 21:2129−69 doi: 10.1007/s10311-023-01593-3 |
| [18] |
Wright SL, Kelly FJ. 2017. Plastic and human health: a micro issue? Environmental Science & Technology 51:6634−47 doi: 10.1021/acs.est.7b00423 |
| [19] |
Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, et al. 2021. Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics 9:224 doi: 10.3390/toxics9090224 |
| [20] |
Andrady AL. 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62:1596−605 doi: 10.1016/j.marpolbul.2011.05.030 |
| [21] |
Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS one 9:e111913 doi: 10.1371/journal.pone.0111913 |
| [22] |
Yang H, Chen G, Wang J. 2021. Microplastics in the marine environment: Sources, fates, impacts and microbial degradation. Toxics 9:41 doi: 10.3390/toxics9020041 |
| [23] |
Boucher J, Friot D. 2017. Primary microplastics in the oceans: a global evaluation of sources. Gland, Switzerland: The International Union for Conservation of Nature (IUCN). doi: 10.2305/IUCN.CH.2017.01.en |
| [24] |
Anderson PJ, Warrack S, Langen V, Challis JK, Hanson ML, et al. 2017. Microplastic contamination in lake Winnipeg, Canada. Environmental pollution 225:223−31 doi: 10.1016/j.envpol.2017.02.072 |
| [25] |
He S, Jia M, Xiang Y, Song B, Xiong W, et al. 2022. Biofilm on microplastics in aqueous environment: physicochemical properties and environmental implications. Journal of Hazardous Materials 424:127286 doi: 10.1016/j.jhazmat.2021.127286 |
| [26] |
Jin Y, Lu L, Tu W, Luo T, Fu Z. 2019. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of The Total Environment 649:308−17 doi: 10.1016/j.scitotenv.2018.08.353 |
| [27] |
Tang KHD, Li R, Li Z, Wang D. 2024. Health risk of human exposure to microplastics: a review. Environmental Chemistry Letters 22:1155−83 doi: 10.1007/s10311-024-01727-1 |
| [28] |
Lai H, Liu X, Qu M. 2022. Nanoplastics and human health: hazard identification and biointerface. Nanomaterials 12:1298 doi: 10.3390/nano12081298 |
| [29] |
Lei J, Ma Q, Ding X, Pang Y, Liu Q, et al. 2024. Microplastic environmental behavior and health risk assessment: a review. Environmental Chemistry Letters 22:2913−41 doi: 10.1007/s10311-024-01771-x |
| [30] |
Cui J, Zhang Y, Liu L, Zhang Q, Xu S, et al. 2023. Polystyrene microplastics induced inflammation with activating the TLR2 signal by excessive accumulation of ROS in hepatopancreas of carp (Cyprinus carpio). Ecotoxicology and Environmental Safety 251:114539 doi: 10.1016/j.ecoenv.2023.114539 |
| [31] |
Solomando A, Capó X, Alomar C, Álvarez E, Compa M, et al. 2020. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758. Environmental Pollution 266:115295 doi: 10.1016/j.envpol.2020.115295 |
| [32] |
Kawa IA, Masood A, Fatima Q, Ahmad Mir S, Jeelani H, et al. 2021. Endocrine disrupting chemical Bisphenol A and its potential effects on female health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 15:803−11 doi: 10.1016/j.dsx.2021.03.031 |
| [33] |
Jones KC. 2021. Persistent organic pollutants (POPs) and related chemicals in the global environment: some personal reflections. Environmental Science & Technology 55:9400−12 doi: 10.1021/acs.est.0c08093 |
| [34] |
Jain R, Gaur A, Suravajhala R, Chauhan U, Pant M, et al. 2023. Microplastic pollution: understanding microbial degradation and strategies for pollutant reduction. Science of The Total Environment 905:167098 doi: 10.1016/j.scitotenv.2023.167098 |
| [35] |
Calero M, Godoy V, Quesada L, Martín-Lara MÁ. 2021. Green strategies for microplastics reduction. Current Opinion in Green and Sustainable Chemistry 28:100442 doi: 10.1016/j.cogsc.2020.100442 |
| [36] |
Chen J, Wu J, Sherrell PC, Chen J, Wang H, et al. 2022. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Advanced Science 9:e2103764 doi: 10.1002/advs.202103764 |
| [37] |
Hirt N, Body-Malapel M. 2020. Immunotoxicity and intestinal effects of nano-and microplastics: a review of the literature. Particle and fibre toxicology 17:57 doi: 10.1186/s12989-020-00387-7 |
| [38] |
Qiao J, Chen R, Wang M, Bai R, Cui X, et al. 2021. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale 13:8806−16 doi: 10.1039/D1NR00038A |
| [39] |
Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, et al. 2013. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. British Journal of Nutrition 109:802−9 doi: 10.1017/S0007114512002206 |
| [40] |
Sakuta M. 2014. Diversity in plant red pigments: anthocyanins and betacyanins. Plant Biotechnology Reports 8:37−48 doi: 10.1007/s11816-013-0294-z |
| [41] |
Dudonné S, Dubé P, Anhê FF, Pilon G, Marette A, et al. 2015. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. Journal of Food Composition and Analysis 44:214−24 doi: 10.1016/j.jfca.2015.09.003 |
| [42] |
Riihinen K, Jaakola L, Kärenlampi S, Hohtola A. 2008. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and 'northblue'blueberry (Vaccinium corymbosum × V. angustifolium). Food chemistry 110:156−60 doi: 10.1016/j.foodchem.2008.01.057 |
| [43] |
Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, et al. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54:4069−75 doi: 10.1021/jf060300l |
| [44] |
Qi Q, Chu M, Yu X, Xie Y, Li Y, et al. 2023. Anthocyanins and proanthocyanidins: chemical structures, food sources, bioactivities, and product development. Food Reviews International 39:4581−609 doi: 10.1080/87559129.2022.2029479 |
| [45] |
Rauter AlP, Herold B, Horton D, Moss G, Schomburg I, et al. 2017. Nomenclature of flavonoids. Pure and Applied Chemistry 90(9):1429−86 doi: 10.1515/pac-2013-0919 |
| [46] |
Eker ME, Aaby K, Budic-Leto I, Rimac Brnčić S, El SN, et al. 2020. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods 9:2 doi: 10.3390/foods9010002 |
| [47] |
Cavalcanti RN, Santos DT, Meireles MAA. 2011. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Research International 44:499−509 doi: 10.1016/j.foodres.2010.12.007 |
| [48] |
Charron CS, Kurilich AC, Clevidence BA, Simon PW, Harrison DJ, et al. 2009. Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. Journal of Agricultural and Food Chemistry 57:1226−30 doi: 10.1021/jf802988s |
| [49] |
Felgines C, Texier O, Besson C, Lyan B, Lamaison JL, et al. 2007. Strawberry pelargonidin glycosides are excreted in urine as intact glycosides and glucuronidated pelargonidin derivatives in rats. British Journal of Nutrition 98:1126−31 doi: 10.1017/S0007114507764772 |
| [50] |
Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, et al. 2016. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition 3:24 doi: 10.3389/fnut.2016.00024 |
| [51] |
Calderaro A, Barreca D, Bellocco E, Smeriglio A, Trombetta D, et al. 2020. Colored phytonutrients: role and applications in the functional foods of anthocyanins. In Phytonutrients in food, eds. Nabavi SM, Suntar I, Barreca D, Khan H. UK: Woodhead Publishing. pp. 177-95. doi: 10.1016/b978-0-12-815354-3.00011-3 |
| [52] |
Keppler K, Humpf HU. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorganic & Medicinal Chemistry 13:5195−205 doi: 10.1016/j.bmc.2005.05.003 |
| [53] |
Aura AM, Martin-Lopez P, O'Leary KA, Williamson G, Oksman-Caldentey KM, et al. 2005. In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition 44:133−42 doi: 10.1007/s00394-004-0502-2 |
| [54] |
Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, et al. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of agricultural and food chemistry 60:3882−90 doi: 10.1021/jf3002153 |
| [55] |
Gentile CL, Weir TL. 2018. The gut microbiota at the intersection of diet and human health. Science 362:776−80 doi: 10.1126/science.aau5812 |
| [56] |
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, et al. 2022. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Scientific Reports 12:528 doi: 10.1038/s41598-021-04489-w |
| [57] |
Sofield CE, Anderton RS, Gorecki AM. 2024. Mind over microplastics: exploring microplastic-induced gut disruption and gut-brain-axis consequences. Current Issues in Molecular Biology 46:4186−202 doi: 10.3390/cimb46050256 |
| [58] |
Zhao Y, Qin Z, Huang Z, Bao Z, Luo T, et al. 2021. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environmental Pollution 282:117039 doi: 10.1016/j.envpol.2021.117039 |
| [59] |
Xu R, Cao JW, Lv HL, Geng Y, Guo MY. 2024. Polyethylene microplastics induced gut microbiota dysbiosis leading to liver injury via the TLR2/NF-κB/NLRP3 pathway in mice. Science of The Total Environment 917:170518 doi: 10.1016/j.scitotenv.2024.170518 |
| [60] |
Zhang X, He X, Pan D, Shi L, Wu Y, et al. 2024. Effects of thermal exposure to disposable plastic tableware on human gut microbiota and metabolites: a quasi-experimental study. Journal of Hazardous Materials 462:132800 doi: 10.1016/j.jhazmat.2023.132800 |
| [61] |
de Souza-Silva TG, Oliveira IA, da Silva GG, Giusti FCV, Novaes RD, et al. 2022. Impact of microplastics on the intestinal microbiota: a systematic review of preclinical evidence. Life Sciences 294:120366 doi: 10.1016/j.lfs.2022.120366 |
| [62] |
Su QL, Wu J, Tan SW, Guo XY, Zou DZ, et al. 2024. The impact of microplastics polystyrene on the microscopic structure of mouse intestine, tight junction genes and gut microbiota. PLoS one 19:e0304686 doi: 10.1371/journal.pone.0304686 |
| [63] |
Wen S, Zhao Y, Liu S, Chen Y, Yuan H, et al. 2022. Polystyrene microplastics exacerbated liver injury from cyclophosphamide in mice: Insight into gut microbiota. Science of the Total Environment 840:156668 doi: 10.1016/j.scitotenv.2022.156668 |
| [64] |
Tong X, Li B, Li J, Li L, Zhang R, et al. 2022. Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice. Chemosphere 288:132579 doi: 10.1016/j.chemosphere.2021.132579 |
| [65] |
Sinha P, Saini V, Varshney N, Pandey RK, Jha HC. 2025. The infiltration of microplastics in human systems: gastrointestinal accumulation and pathogenic impacts. Heliyon 11:e42606 doi: 10.1016/j.heliyon.2025.e42606 |
| [66] |
Fackelmann G, Sommer S. 2019. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Marine Pollution Bulletin 143:193−203 doi: 10.1016/j.marpolbul.2019.04.030 |
| [67] |
Demarquoy J. 2024. Microplastics and microbiota: Unraveling the hidden environmental challenge. World Journal of Gastroenterology 30:2191 doi: 10.3748/wjg.v30.i16.2191 |
| [68] |
Dawson AL, Kawaguchi S, King CK, Townsend KA, King R, et al. 2018. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature communications 9:1001 doi: 10.1038/s41467-018-03465-9 |
| [69] |
Ni J, Wu GD, Albenberg L, Tomov VT. 2017. Gut microbiota and IBD: causation or correlation? Nature Reviews Gastroenterology & Hepatology 14:573−84 doi: 10.1038/nrgastro.2017.88 |
| [70] |
Tavelli R, Callens M, Grootaert C, Abdallah MF, Rajkovic A. 2022. Foodborne pathogens in the plastisphere: can microplastics in the food chain threaten microbial food safety? Trends in Food Science & Technology 129:1−10 |
| [71] |
Chen W, Chu Q, Ye X, Sun Y, Liu Y, et al. 2021. Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge. Environmental pollution 274:116524 doi: 10.1016/j.envpol.2021.116524 |
| [72] |
Chen W, Zhu R, Ye X, Sun Y, Tang Q, et al. 2022. Food-derived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food & function 13:1447−58 |
| [73] |
Zhang J, Liu W, Cui F, Kolehmainen M, Chen J, et al. 2025. Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: a steroid receptor perspective. Journal of Pharmaceutical Analysis 15:101148 doi: 10.1016/j.jpha.2024.101148 |
| [74] |
Faria A, Fernandes I, Norberto S, Mateus N, Calhau C. 2014. Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry 62:6898−902 doi: 10.1021/jf501808a |
| [75] |
Morais CA, de Rosso VV, Estadella D, Pisani LP. 2016. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of nutritional biochemistry 33:1−7 doi: 10.1016/j.jnutbio.2015.11.008 |
| [76] |
Wang H, Liu D, Ji Y, Liu Y, Xu L, et al. 2020. Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet. Molecular nutrition & food research 64:1900876 doi: 10.1002/mnfr.201900876 |
| [77] |
Ding R, Ma Y, Li T, Sun M, Sun Z, Duan J. 2023. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. Science of The Total Environment 878:163144 doi: 10.1016/j.scitotenv.2023.163144 |
| [78] |
Hu M, Palić D. 2020. Micro-and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox biology 37:101620 doi: 10.1016/j.redox.2020.101620 |
| [79] |
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. 2024. Microplastics and oxidative stress—current problems and prospects. Antioxidants 13:579 doi: 10.3390/antiox13050579 |
| [80] |
Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, et al. 2023. The influence of gut microbiota on oxidative stress and the immune system. Biomedicines 11:1388 doi: 10.3390/biomedicines11051388 |
| [81] |
Caputi S, Diomede F, Lanuti P, Marconi GD, Di Carlo P, et al. 2022. Microplastics affect the inflammation pathway in human gingival fibroblasts: a study in the Adriatic Sea. International Journal of Environmental Research and Public Health 19:7782 doi: 10.3390/ijerph19137782 |
| [82] |
Huang W, Yan Z, Li D, Ma Y, Zhou J, et al. 2018. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity 2018:1862462 doi: 10.1155/2018/1862462 |
| [83] |
Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, et al. 2018. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences 19:461 doi: 10.3390/ijms19020461 |
| [84] |
Rehman SU, Ali Shah S, Ali T, Chung JI, Kim MO. 2017. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Molecular Neurobiology 54:255−71 doi: 10.1007/s12035-015-9604-5 |
| [85] |
Furuuchi R, Shimizu I, Yoshida Y, Hayashi Y, Ikegami R, et al. 2018. Boysenberry polyphenol inhibits endothelial dysfunction and improves vascular health. PloS one 13:e0202051 doi: 10.1371/journal.pone.0202051 |
| [86] |
Bicudo MOP, Ribani RH, Beta T. 2014. Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis M) along the on-tree ripening process. Plant Foods for Human Nutrition 69:142−47 doi: 10.1007/s11130-014-0406-0 |
| [87] |
Ma Z, Du B, Li J, Yang Y, Zhu F. 2021. An insight into anti-inflammatory activities and inflammation related diseases of anthocyanins: a review of both in vivo and in vitro investigations. International Journal of Molecular Sciences 22:11076 doi: 10.3390/ijms222011076 |
| [88] |
Duarte LJ, Chaves VC, dos Santos Nascimento MVP, Calvete E, Li M, et al. 2018. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry 247:56−65 doi: 10.1016/j.foodchem.2017.12.015 |
| [89] |
Roth S, Spalinger MR, Gottier C, Biedermann L, Zeitz J, et al. 2016. Bilberry-derived anthocyanins modulate cytokine expression in the intestine of patients with ulcerative colitis. PLoS one 11:e0154817 doi: 10.1371/journal.pone.0154817 |
| [90] |
Le Phuong Nguyen T, Fenyvesi F, Remenyik J, Homoki JR, Gogolák P, et al. 2018. Protective effect of pure sour cherry anthocyanin extract on cytokine-induced inflammatory caco-2 monolayers. Nutrients 10:861 doi: 10.3390/nu10070861 |
| [91] |
Zhang Y, Meng Q, Yin J, Zhang Z, Bao H, et al. 2020. Anthocyanins attenuate neuroinflammation through the suppression of MLK3 activation in a mouse model of perioperative neurocognitive disorders. Brain Research 1726:146504 doi: 10.1016/j.brainres.2019.146504 |
| [92] |
Cui HX, Chen JH, Li JW, Cheng FR, Yuan K. 2018. Protection of anthocyanin from Myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Molecules 23:1788 doi: 10.3390/molecules23071788 |
| [93] |
Wu T, Tang Q, Yu Z, Gao Z, Hu H, et al. 2014. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. International Journal of Food Sciences and Nutrition 65:351−59 doi: 10.3109/09637486.2013.854749 |
| [94] |
Nazir N, Akbar A, Salar MZ, Ahmed MZ, Ishtiaq A. 2024. Pharmacological assessment of delphinidin in counteracting polystyrene microplastic induced renal dysfunction in rats. Journal of King Saud University-Science 36:103462 doi: 10.1016/j.jksus.2024.103462 |
| [95] |
Chen W, Zheng X, Yan F, Xu L, Ye X. 2024. Modulation of gut microbial metabolism by cyanidin-3-O-glucoside in mitigating polystyrene-induced colonic inflammation: insights from 16S rRNa sequencing and metabolomics. Journal of agricultural and food chemistry 72:7140−54 doi: 10.1021/acs.jafc.3c08454 |
| [96] |
Wang M, Zhang Z, Sun H, He S, Liu S, et al. 2022. Research progress of anthocyanin prebiotic activity: A review. Phytomedicine 102:154145 doi: 10.1016/j.phymed.2022.154145 |
| [97] |
Doughari JH, Ndakidemi PA, Human IS, Benade S. 2012. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata. Journal of Ethnopharmacology 141:1041−50 doi: 10.1016/j.jep.2012.03.051 |
| [98] |
Sun XH, Zhou TT, Wei CH, Lan WQ, Zhao Y, et al. 2018. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 94:155−61 doi: 10.1016/j.foodcont.2018.07.012 |
| [99] |
Ivanovski S, Haase HR, Bartold PM. 2001. Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts. Journal of Dental Research 80:1665−71 doi: 10.1177/00220345010800071301 |
| [100] |
Lacombe A, Li RW, Klimis-Zacas D, Kristo AS, Tadepalli S, et al. 2013. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 8:e67497 doi: 10.1371/journal.pone.0067497 |
| [101] |
Sun H, Zhang P, Zhu Y, Lou Q, He S. 2018. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports 8:5018 doi: 10.1038/s41598-018-23397-0 |
| [102] |
Chen W, Tu P, Ye X, Tang Q, Yu T, et al. 2022. Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicology and Applied Pharmacology 453:116212 doi: 10.1016/j.taap.2022.116212 |
| [103] |
Shipp J, Abdel-Aal ESM. 2010. Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Science Journal 4:7−22 doi: 10.2174/1874256401004010007 |
| [104] |
EFSA Panel on Food Additives and Nutrient Sources added to Food. 2013. Scientific Opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA Journal 11:3145 doi: 10.2903/j.efsa.2013.3145 |
| [105] |
Lehto S, Buchweitz M, Klimm A, Straßburger R, Bechtold C, et al. 2017. Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Additives & Contaminants: Part A 34:335−55 doi: 10.1080/19440049.2016.1274431 |
| [106] |
Du L, Lü H, Chen Y, Yu X, Jian T, et al. 2023. Blueberry and blackberry anthocyanins ameliorate metabolic syndrome by modulating gut microbiota and short-chain fatty acids metabolism in high-fat diet-fed C57BL/6J mice. Journal of Agricultural and Food Chemistry 71:14649−65 doi: 10.1021/acs.jafc.3c04606 |
| [107] |
Della Lucia CM, Oliveira LA, Dias KA, Pereira SMS, da Conceição AR, et al. 2023. Scientific evidence for the beneficial effects of dietary blueberries on gut health: a systematic review. Molecular Nutrition & Food Research 67:2300096 |
| [108] |
Stevenson D, Scalzo J. 2012. Anthocyanin composition and content of blueberries from around the world. Journal of Berry Research 2:179−89 doi: 10.3233/JBR-2012-038 |
| [109] |
Wu Y, Han Y, Tao Y, Li D, Xie G, et al. 2020. In vitro gastrointestinal digestion and fecal fermentation reveal the effect of different encapsulation materials on the release, degradation and modulation of gut microbiota of blueberry anthocyanin extract. Food Research International 132:109098 doi: 10.1016/j.foodres.2020.109098 |
| [110] |
Lätti AK, Riihinen KR, Kainulainen PS. 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. Journal of Agricultural and Food Chemistry 56:190−96 doi: 10.1021/jf072857m |
| [111] |
Li J, Wu T, Li N, Wang X, Chen G, et al. 2019. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food & Function 10:333−43 |
| [112] |
Wang L, Jiang G, Jing N, Liu X, Li Q, et al. 2020. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota. Food & Function 11:3180−90 |
| [113] |
Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, et al. 2012. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutrition, Metabolism and Cardiovascular Diseases 22:72−80 doi: 10.1016/j.numecd.2010.04.011 |
| [114] |
Marques C, Fernandes I, Meireles M, Faria A, Spencer JPE, et al. 2018. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Scientific Reports 8:11341 doi: 10.1038/s41598-018-29744-5 |
| [115] |
Pan P, Lam V, Salzman N, Huang YW, Yu J, et al. 2017. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutrition and Cancer 69:943−51 doi: 10.1080/01635581.2017.1340491 |
| [116] |
Gu J, Thomas-Ahner JM, Riedl KM, Bailey MT, Vodovotz Y, et al. 2019. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Molecular nutrition & food research 63:1800636 |
| [117] |
Zhang S, Xu M, Sun X, Liu X, Choueiry F, et al. 2022. Black raspberry extract shifted gut microbe diversity and their metabolic landscape in a human colonic model. Journal of Chromatography B 1188:123027 doi: 10.1016/j.jchromb.2021.123027 |
| [118] |
Wang J, Yuan ZY, Wang XY, Zhu JX, Huang WF, et al. 2024. Anthocyanins-rich cranberry extract attenuates DSS-induced IBD in an intestinal flora independent manner. Current Research in Food Science 9:100815 doi: 10.1016/j.crfs.2024.100815 |
| [119] |
Petersen C, Wankhade UD, Bharat D, Wong K, Mueller JE, et al. 2019. Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. The Journal of Nutritional Biochemistry 66:63−69 doi: 10.1016/j.jnutbio.2019.01.004 |
| [120] |
Sidor A, Gramza-Michałowska A. 2015. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food–a review. Journal of Functional Foods 18:941−58 doi: 10.1016/j.jff.2014.07.012 |
| [121] |
Pahlke G, Ahlberg K, Oertel A, Janson-Schaffer T, Grabher S, et al. 2021. Antioxidant effects of elderberry anthocyanins in human colon carcinoma cells: A study on structure–activity relationships. Molecular Nutrition & Food Research 65:2100229 |
| [122] |
Koskela AKJ, Anttonen MJ, Soininen TH, Saviranta NMM, Auriola S, et al. 2010. Variation in the anthocyanin concentration of wild populations of crowberries (Empetrum nigrum L. subsp. hermaphroditum). Journal of Agricultural and Food Chemistry 58:12286−91 doi: 10.1021/jf1037695 |
| [123] |
Cremonini E, Mastaloudis A, Hester SN, Verstraeten SV, Anderson M, et al. 2017. Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food & Function 8:2915−23 |
| [124] |
Zhu Y, Zhang JY, Wei YL, Hao JY, Lei YQ, et al. 2020. The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats. Nutrition & metabolism 17:54 doi: 10.1186/s12986-020-00473-9 |
| [125] |
Istas G, Wood E, Le Sayec M, Rawlings C, Yoon J, et al. 2019. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. The American Journal of Clinical Nutrition 110:316−29 doi: 10.1093/ajcn/nqz075 |
| [126] |
Cao L, Lee SG, Melough MM, Sakaki JR, Maas KR, et al. 2020. Long-term blackcurrant supplementation modified gut microbiome profiles in mice in an age-dependent manner: an exploratory study. Nutrients 12:290 doi: 10.3390/nu12020290 |
| [127] |
de Moura Amália Soares dos Reis C, da Silva Vanderlei Aparecido de Lima LD, Cadorin Oldoni TL, Pereira C, Carpes ST. 2018. Optimization of phenolic compounds extraction with antioxidant activity from açaí, blueberry and goji berry using response surface methodology. Emirates Journal of Food and Agriculture 30:180−89 doi: 10.9755/ejfa.2018.v30.i3.1639 |
| [128] |
Mertens-Talcott SU, Rios J, Jilma-Stohlawetz P, Pacheco-Palencia LA, Meibohm B, et al. 2008. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. Journal of Agricultural and Food Chemistry 56:7796−802 doi: 10.1021/jf8007037 |
| [129] |
Song H, Shen X, Deng R, Zhang Y, Zheng X. 2021. Dietary anthocyanin-rich extract of açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of gut microbiota in mice. Nutrition 86:111176 doi: 10.1016/j.nut.2021.111176 |
| [130] |
Alqurashi RM, Alarifi SN, Walton GE, Costabile AF, Rowland IR, et al. 2017. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chemistry 234:190−98 doi: 10.1016/j.foodchem.2017.04.164 |
| [131] |
Zheng J, Ding C, Wang L, Li G, Shi J, et al. 2011. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food chemistry 126:859−65 doi: 10.1016/j.foodchem.2010.11.052 |
| [132] |
Yan Y, Peng Y, Tang J, Mi J, Lu L, et al. 2018. Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. Journal of Functional Foods 48:533−41 doi: 10.1016/j.jff.2018.07.053 |
| [133] |
Tian B, Zhao J, Zhang M, Chen Z, Ma Q, et al. 2021. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Molecular Nutrition & Food Research 65:2000745 |
| [134] |
Peng Y, Yan Y, Wan P, Dong W, Huang K, et al. 2020. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International 130:108952 doi: 10.1016/j.foodres.2019.108952 |
| [135] |
Peng Y, Yan Y, Wan P, Chen D, Ding Y, et al. 2019. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology and Medicine 136:96−108 doi: 10.1016/j.freeradbiomed.2019.04.005 |
| [136] |
David L, Danciu V, Moldovan B, Filip A. 2019. Effects of in vitro gastrointestinal digestion on the antioxidant capacity and anthocyanin content of cornelian cherry fruit extract. Antioxidants 8:114 doi: 10.3390/antiox8050114 |
| [137] |
Van Hul M, Geurts L, Plovier H, Druart C, Everard A, et al. 2018. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology-Endocrinology and Metabolism 314:E334−E352 doi: 10.1152/ajpendo.00107.2017 |
| [138] |
Igwe EO, Charlton KE, Roodenrys S, Kent K, Fanning K, et al. 2017. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutrition Research 47:28−43 doi: 10.1016/j.nutres.2017.08.006 |
| [139] |
Bhaswant M, Brown L, Mathai ML. 2019. Queen Garnet plum juice and raspberry cordial in mildly hypertensive obese or overweight subjects: a randomized, double-blind study. Journal of functional foods 56:119−26 doi: 10.1016/j.jff.2019.03.011 |
| [140] |
Song H, Shen X, Deng R, Chu Q, Zheng X. 2022. Pomegranate peel anthocyanins prevent diet-induced obesity and insulin resistance in association with modulation of the gut microbiota in mice. European journal of nutrition 61:1837−47 doi: 10.1007/s00394-021-02771-1 |
| [141] |
Zhu F, Yuan Z, Zhao X, Yin Y, Feng L. 2015. Composition and contents of anthocyanins in different pomegranate cultivars. Acta Horticulturae 1089:35−41 doi: 10.17660/actahortic.2015.1089.3 |
| [142] |
Corrêa TAF, Tobaruela EdC, Capetini VC, Quintanilha BJ, Cortez RV, et al. 2023. Blood orange juice intake changes specific bacteria of gut microbiota associated with cardiometabolic biomarkers. Frontiers in Microbiology 14:1199383 doi: 10.3389/fmicb.2023.1199383 |
| [143] |
Lee HS. 2002. Characterization of major anthocyanins and the color of red-fleshed Budd Blood orange (Citrus sinensis). Journal of Agricultural and Food Chemistry 50:1243−46 doi: 10.1021/jf011205+ |
| [144] |
Zhang N, Jing P. 2023. Red cabbage anthocyanins attenuate cognitive impairment by attenuating neuroinflammation and regulating gut microbiota in aging mice. Journal of Agricultural and Food Chemistry 71:15064−72 doi: 10.1021/acs.jafc.3c03183 |
| [145] |
Żary-Sikorska E, Fotschki B, Fotschki J, Wiczkowski W, Juśkiewicz J. 2019. Preparations from purple carrots containing anthocyanins improved intestine microbial activity, serum lipid profile and antioxidant status in rats. Journal of Functional Foods 60:103442 doi: 10.1016/j.jff.2019.103442 |
| [146] |
Kim HJ, Koo KA, Park WS, Kang DM, Kim HS, et al. 2020. Anti-obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet potatoes. Journal of Food Biochemistry 44:e13438 |
| [147] |
Lee EJ, Yoo KS, Patil BS. 2011. Total carotenoid, anthocyanin, and sugar contents in sliced or whole purple (cv. Betasweet) and orange carrots during 4-week cold storage. Horticulture, Environment, and Biotechnology 52:402−07 doi: 10.1007/s13580-011-0227-0 |
| [148] |
Condurache (Lazăr) NN, Croitoru C, Enachi E, Bahrim GE, Stănciuc N, et al. 2021. Eggplant peels as a valuable source of anthocyanins: extraction, thermal stability and biological activities. Plants 10:577 doi: 10.3390/plants10030577 |
| [149] |
Liu D, Ji Y, Wang K, Guo Y, Wang H, et al. 2022. Purple sweet potato anthocyanin extract regulates redox state related to gut microbiota homeostasis in obese mice. Journal of Food Science 87:2133−46 doi: 10.1111/1750-3841.16130 |
| [150] |
Mi W, Hu Z, Zhao S, Wang W, Lian W, et al. 2024. Purple sweet potato anthocyanins normalize the blood glucose concentration and restore the gut microbiota in mice with type 2 diabetes mellitus. Heliyon 10:e31784 doi: 10.1016/j.heliyon.2024.e31784 |
| [151] |
Steed LE, Truong VD. 2008. Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purees. Journal of Food Science 73:S215−S221 doi: 10.1111/j.1750-3841.2008.00774.x |
| [152] |
Fang JL, Luo Y, Jin SH, Yuan K, Guo Y. 2020. Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. Journal of Functional Foods 66:103757 doi: 10.1016/j.jff.2019.103757 |
| [153] |
Volden J, Bengtsson GB, Wicklund T. 2009. Glucosin olates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chemistry 112:967−76 |
| [154] |
Marrelli M, Russo C, Statti G, Argentieri MP, Meleleo D, et al. 2022. Phytochemical and biological characterization of dry outer scales extract from Tropea red onion (Allium cepa L. var. Tropea)–A promising inhibitor of pancreatic lipase. Phytomedicine Plus 2:100235 |
| [155] |
Sun M, Li D, Hua M, Miao X, Su Y, et al. 2022. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food & Function 13:7377−91 |
| [156] |
Lee JH. 2010. Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Science and Biotechnology 19:391−97 doi: 10.1007/s10068-010-0055-5 |
| [157] |
Tian XZ, Li JX, Luo QY, Zhou D, Long QM, et al. 2021. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats. Frontiers in Veterinary Science 8:715710 doi: 10.3389/fvets.2021.715710 |
| [158] |
Xu H, Liu M, Liu H, Zhao B, Zheng M, et al. 2021. Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK. Journal of Functional Foods 84:104582 doi: 10.1016/j.jff.2021.104582 |
| [159] |
Lao F, Giusti MM. 2016. Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: method comparison and correlation. Food Analytical Methods 9:1367−80 doi: 10.1007/s12161-015-0318-0 |
| [160] |
Takeoka GR, Dao LT, Full GH, Wong RY, Harden LA, et al. 1997. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. Journal of Agricultural and Food Chemistry 45:3395−400 doi: 10.1021/jf970264d |
| [161] |
Le Roy CI, Wells PM, Si J, Raes J, Bell JT, et al. 2020. Red wine consumption associated with increased gut microbiota α-diversity in 3 independent cohorts. Gastroenterology 158:270−272.e2 doi: 10.1053/j.gastro.2019.08.024 |
| [162] |
Boto-Ordóñez M, Urpi-Sarda M, Queipo-Ortuño MI, Tulipani S, Tinahones FJ, et al. 2014. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food & Function 5:1932−38 doi: 10.1039/C4FO00029C |
| [163] |
Cliff MA, King MC, Schlosser J. 2007. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food research international 40:92−100 doi: 10.1016/j.foodres.2006.08.002 |
| [164] |
Amer SA, Al-Khalaifah HS, Gouda A, Osman A, Goda NIA, et al. 2022. Potential effects of anthocyanin-rich Roselle (Hibiscus sabdariffa L.) extract on the growth, intestinal histomorphology, blood biochemical parameters, and the immune status of broiler chickens. Antioxidants 11:544 doi: 10.3390/antiox11030544 |
| [165] |
Paraíso CM, Januário JGB, Mizuta AG, dos Santos SS, dos Santos Magon TF, et al. 2021. Comparative studies on chemical stability, antioxidant and antimicrobial activity from hot and cold hibiscus (Hibiscus sabdariffa L.) calyces tea infusions. Journal of Food Measurement and Characterization 15:3531−38 doi: 10.1007/s11694-021-00936-4 |