| [1] |
Song S, Tian D, Zhang Z, Hu S, Yu J. 2018. Rice genomics: over the past two decades and into the future. Genomics, Proteomics & Bioinformatics 16:397−404 doi: 10.1016/j.gpb.2019.01.001 |
| [2] |
Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324:7−14 doi: 10.1111/nyas.12540 |
| [3] |
Huang C, Chen Z, Liang C. 2021. Oryza pan-genomics: a new foundation for future rice research and improvement. Crop Journal 9:622−32 doi: 10.1016/j.cj.2021.04.003 |
| [4] |
Izawa T, Shimamoto K. 1996. Becoming a model plant: The importance of rice to plant science. Trends in Plant Science 1:95−99 doi: 10.1016/S1360-1385(96)80041-0 |
| [5] |
Wang C, Han B. 2022. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Molecular Plant 15:593−619 doi: 10.1016/j.molp.2022.03.009 |
| [6] |
Li H, Durbin R. 2024. Genome assembly in the telomere-to-telomere era. Nature Reviews Genetics 25:658−70 doi: 10.1038/s41576-024-00718-w |
| [7] |
Shirasawa K, Harada D, Hirakawa H, Isobe S, Kole C. 2021. Chromosome-level de novo genome assemblies of over 100 plant species. Breeding Science 71:117−24 doi: 10.1270/jsbbs.20146 |
| [8] |
Saxena RK, Edwards D, Varshney RK. 2014. Structural variations in plant genomes. Briefings in Functional Genomics 13:296−307 doi: 10.1093/bfgp/elu016 |
| [9] |
Zhao H, Li J, Yang L, Qin G, Xia C, et al. 2021. An inferred functional impact map of genetic variants in rice. Molecular Plant 14:1584−99 doi: 10.1016/j.molp.2021.06.025 |
| [10] |
Zhao H, Yao W, Ouyang Y, Yang W, Wang G, et al. 2015. RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Research 43:D1018−D1022 doi: 10.1093/nar/gku894 |
| [11] |
Wang T, He W, Li X, Zhang C, He H, et al. 2023. A rice variation map derived from 10548 rice accessions reveals the importance of rare variants. Nucleic Acids Research 51:10924−33 doi: 10.1093/nar/gkad840 |
| [12] |
Sun C, Hu Z, Zheng T, Lu K, Zhao Y, et al. 2017. RPAN: rice pan-genome browser for ~3000 rice genomes. Nucleic Acids Research 45:597−605 doi: 10.1093/nar/gkw958 |
| [13] |
Chen J, Tan C, Zhu M, Zhang C, Wang Z, et al. 2024. CropGS-Hub: a comprehensive database of genotype and phenotype resources for genomic prediction in major crops. Nucleic Acids Research 52:D1519−D1529 doi: 10.1093/nar/gkad1062 |
| [14] |
Shen Z, Shen E, Yang K, Fan Z, Zhu QH, et al. 2024. BreedingAIDB: a database integrating crop genome-to-phenotype paired data with machine learning tools applicable to breeding. Plant Communications 5:100894 doi: 10.1016/j.xplc.2024.100894 |
| [15] |
Li H, Li X, Zhang P, Feng Y, Mi J, et al. 2024. Smart Breeding Platform: a web-based tool for high-throughput population genetics, phenomics, and genomic selection. Molecular Plant 17:677−81 doi: 10.1016/j.molp.2024.03.002 |
| [16] |
Yang L, Wang H, Zou M, Chai H, Xia Z. 2025. Artificial intelligence-driven plant bio-genomics research: a new era. Tropical Plants 4:e015 doi: 10.48130/tp-0025-0008 |
| [17] |
Mendoza-Revilla J, Trop E, Gonzalez L, Roller M, Dalla-Torre H, et al. 2024. A foundational large language model for edible plant genomes. Communications Biology 7:835 doi: 10.1038/s42003-024-06465-2 |
| [18] |
Liang Z, Zhang Q, Ji C, Hu G, Zhang P, et al. 2021. Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biology 19:53 doi: 10.1186/s12915-021-00996-4 |
| [19] |
Jing CY, Zhang FM, Wang XH, Wang MX, Zhou L, et al. 2023. Multiple domestications of Asian rice. Nature Plants 9:1221−35 doi: 10.1038/s41477-023-01476-z |
| [20] |
Huang X, Wei X, Sang T, Zhao Q, Feng Q, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics 42:961−67 doi: 10.1038/ng.695 |
| [21] |
Huang X, Zhao Y, Wei X, Li C, Wang A, et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44:32−39 doi: 10.1038/ng.1018 |
| [22] |
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, et al. 2018. Genomic variation in 3, 010 diverse accessions of Asian cultivated rice. Nature 557:43−49 doi: 10.1038/s41586-018-0063-9 |
| [23] |
Cameron DL, Di Stefano L, Papenfuss AT. 2019. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nature Communications 10:3240 doi: 10.1038/s41467-019-11146-4 |
| [24] |
Song JM, Xie WZ, Wang S, Guo YX, Koo DH, et al. 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant 14:1757−67 doi: 10.1016/j.molp.2021.06.018 |
| [25] |
Shang L, He W, Wang T, Yang Y, Xu Q, et al. 2023. A complete assembly of the rice Nipponbare reference genome. Molecular Plant 16:1232−36 doi: 10.1016/j.molp.2023.08.003 |
| [26] |
Zhang Y, Fu J, Wang K, Han X, Yan T, et al. 2022. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnology Journal 20:1642−44 doi: 10.1111/pbi.13880 |
| [27] |
Qin P, Lu H, Du H, Wang H, Chen W, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184:3542−3558.e16 doi: 10.1016/j.cell.2021.04.046 |
| [28] |
Zhang F, Xue H, Dong X, Li M, Zheng X, et al. 2022. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Research 32:853−63 doi: 10.1101/gr.276015.121 |
| [29] |
Wu D, Xie L, Sun Y, Huang Y, Jia L, et al. 2023. A syntelog-based pan-genome provides insights into rice domestication and de-domestication. Genome Biology 24:179 doi: 10.1186/s13059-023-03017-5 |
| [30] |
Long W, He Q, Wang Y, Wang Y, Wang J, et al. 2024. Genome evolution and diversity of wild and cultivated rice species. Nature Communications 15:9994 doi: 10.1038/s41467-024-54427-3 |
| [31] |
Zhou Y, Yu Z, Chebotarov D, Chougule K, Lu Z, et al. 2023. Pan-genome inversion index reveals evolutionary insights into the subpopulation structure of Asian rice. Nature Communications 14:1567 doi: 10.1038/s41467-023-37004-y |
| [32] |
Ma X, Wang H, Yan S, Zhou C, Zhou K, et al. 2025. Large-scale genomic and phenomic analyses of modern cultivars empower future rice breeding design. Molecular Plant 18:651−68 doi: 10.1016/j.molp.2025.03.007 |
| [33] |
Guo D, Li Y, Lu H, Zhao Y, Kurata N, et al. 2025. A pangenome reference of wild and cultivated rice. Nature 642:662−71 doi: 10.1038/s41586-025-08883-6 |
| [34] |
Wei X, Chen M, Zhang Q, Gong J, Liu J, et al. 2024. Genomic investigation of 18, 421 lines reveals the genetic architecture of rice. Science 385:eadm8762 doi: 10.1126/science.adm8762 |
| [35] |
Dan Z, Chen Y, Huang W. 2025. Structural variations contribute to genetic diversity and heterosis in rice. bioRxiv Preprint doi: 10.1101/2024.11.03.621459 |
| [36] |
Gu Z, Gong J, Zhu Z, Li Z, Feng Q, et al. 2023. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nature Genetics 55:1745−56 doi: 10.1038/s41588-023-01495-8 |
| [37] |
Chen Z, Bu Q, Liu G, Wang M, Wang H, et al. 2023. Genomic decoding of breeding history to guide breeding-by-design in rice. National Science Review 10:nwad029 doi: 10.1093/nsr/nwad029 |
| [38] |
Singh PK, Rawal HC, Panda AK, Roy J, Mondal TK, et al. 2022. Pan-genomic, transcriptomic, and miRNA analyses to decipher genetic diversity and anthocyanin pathway genes among the traditional rice landraces. Genomics 114:110436 doi: 10.1016/j.ygeno.2022.110436 |
| [39] |
Shang L, Li X, He H, Yuan Q, Song Y, et al. 2022. A super pan-genomic landscape of rice. Cell Research 32:878−96 doi: 10.1038/s41422-022-00685-z |
| [40] |
Wei X, Qiu J, Yong K, Fan J, Zhang Q, et al. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics 53:243−53 doi: 10.1038/s41588-020-00769-9 |
| [41] |
Li X, Chen Z, Zhang G, Lu H, Qin P, et al. 2020. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Science China Life Sciences 63:1688−702 doi: 10.1007/s11427-019-1682-6 |
| [42] |
Zhao Q, Feng Q, Lu H, Li Y, Wang A, et al. 2018. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics 50:278−84 doi: 10.1038/s41588-018-0041-z |
| [43] |
Huang X, Yang S, Gong J, Zhao Q, Feng Q, et al. 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537:629−33 doi: 10.1038/nature19760 |
| [44] |
Huang X, Yang S, Gong J, Zhao Y, Feng Q, et al. 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications 6:6258 doi: 10.1038/ncomms7258 |
| [45] |
Xie W, Wang G, Yuan M, Yao W, Lyu K, et al. 2015. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences of the United States of America 112:E5411−E5419 doi: 10.1073/pnas.1515919112 |
| [46] |
Huang X, Kurata N, Wei X, Wang ZX, Wang A, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497−501 doi: 10.1038/nature11532 |
| [47] |
Laborte AG, Gutierrez MA, Balanza JG, Saito K, Zwart SJ, et al. 2017. RiceAtlas, a spatial database of global rice calendars and production. Scientific Data 4:170074 doi: 10.1038/sdata.2017.74 |
| [48] |
Yu Z, Chen Y, Zhou Y, Zhang Y, Li M, et al. 2023. Rice Gene Index: a comprehensive pan-genome database for comparative and functional genomics of Asian rice. Molecular Plant 16:798−801 doi: 10.1016/j.molp.2023.03.012 |
| [49] |
Ohyanagi H, Ebata T, Huang X, Gong H, Fujita M, et al. 2016. OryzaGenome: genome diversity database of wild Oryza species. Plant and Cell Physiology 57:e1 doi: 10.1093/pcp/pcv171 |
| [50] |
Kajiya-Kanegae H, Ohyanagi H, Ebata T, Tanizawa Y, Onogi A, et al. 2021. OryzaGenome2.1: database of diverse genotypes in wild Oryza species. Rice 14:24 doi: 10.1186/s12284-021-00468-x |
| [51] |
Reiser L, Harper L, Freeling M, Han B, Luan S. 2018. FAIR: a call to make published data more findable, accessible, interoperable, and reusable. Molecular Plant 11:1105−108 doi: 10.1016/j.molp.2018.07.005 |
| [52] |
VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91:4414−23 doi: 10.3168/jds.2007-0980 |
| [53] |
Ahmadi Z, Kesbi FG. 2021. Assessing the performance of a novel method for genomic selectio: rrBLUP-method6. Journal of Genetics 100:24 doi: 10.1007/s12041-021-01275-5 |
| [54] |
Sakai H, Lee SS, Tanaka T, Numa H, Kim J, et al. 2013. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology 54:e6 doi: 10.1093/pcp/pcs183 |
| [55] |
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4 doi: 10.1186/1939-8433-6-4 |
| [56] |
Peng H, Wang K, Chen Z, Cao Y, Gao Q, et al. 2020. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Research 48:D1085−D1092 doi: 10.1093/nar/gkz921 |
| [57] |
Zhang C, Cui Y, Yuan C, Zhang F, Zhu Q, et al. 2025. Rice3kGS: a powerful web platform and database for large-scale genome selection. Plant Communications 00:101369 (inpress) doi: 10.1016/j.xplc.2025.101369 |
| [58] |
Wu H, Han R, Zhao L, Liu M, Chen H, et al. 2025. AutoGP: an intelligent breeding platform for enhancing maize genomic selection. Plant Communications 6:101240 doi: 10.1016/j.xplc.2025.101240 |
| [59] |
Chen R, Deng Y, Ding Y, Guo J, Qiu J, et al. 2022. Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences 65:33−92 doi: 10.1007/s11427-021-2024-0 |
| [60] |
Si L, Chen J, Huang X, Gong H, Luo J, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics 48:447−56 doi: 10.1038/ng.3518 |
| [61] |
Wang X, Zou B, Shao Q, Cui Y, Lu S, et al. 2018. Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Journal of Experimental Botany 69:413−21 doi: 10.1093/jxb/erx413 |
| [62] |
Anacleto R, Badoni S, Parween S, Butardo VM Jr, Misra G, et al. 2019. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnology Journal 17:1261−75 doi: 10.1111/pbi.13051 |
| [63] |
Li Y, Miao Y, Yuan H, Huang F, Sun M, et al. 2024. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. Molecular Plant 17:1866−82 doi: 10.1016/j.molp.2024.11.002 |
| [64] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, et al. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40:761−67 doi: 10.1038/ng.143 |
| [65] |
Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, et al. 2017. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal 15:754−64 doi: 10.1111/pbi.12673 |
| [66] |
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, et al. 2024. Artificial intelligence in plant breeding. Trends in Genetics 40:891−908 doi: 10.1016/j.tig.2024.07.001 |
| [67] |
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22:961−75 doi: 10.1016/j.tplants.2017.08.011 |
| [68] |
Ma W, Qiu Z, Song J, Li J, Cheng Q, et al. 2018. A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta 248:1307−18 doi: 10.1007/s00425-018-2976-9 |
| [69] |
Wang K, Abid MA, Rasheed A, Crossa J, Hearne S, et al. 2023. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant 16:279−93 doi: 10.1016/j.molp.2022.11.004 |
| [70] |
Ma X, Wang H, Wu S, Han B, Cui D, et al. 2024. DeepCCR: large-scale genomics-based deep learning method for improving rice breeding. Plant Biotechnology Journal 22:2691−93 doi: 10.1111/pbi.14384 |
| [71] |
Gao P, Zhao H, Luo Z, Lin Y, Feng W, et al. 2023. SoyDNGP: a web-accessible deep learning framework for genomic prediction in soybean breeding. Briefings in Bioinformatics 24:bbad349 doi: 10.1093/bib/bbad349 |
| [72] |
Wu C, Zhang Y, Ying Z, Li L, Wang J, et al. 2024. A transformer-based genomic prediction method fused with knowledge-guided module. Briefings in Bioinformatics 25:bbad438 doi: 10.1093/bib/bbae438 |
| [73] |
Wang H, Yan S, Wang W, Chen Y, Hong J, et al. 2025. Cropformer: an interpretable deep learning framework for crop genomic prediction. Plant Communications 6:101223 doi: 10.1016/j.xplc.2024.101223 |
| [74] |
He K, Yu T, Gao S, Chen S, Li L, et al. 2025. Leveraging automated machine learning for environmental data-driven genetic analysis and genomic prediction in maize hybrids. Advanced Science 12:e2412423 doi: 10.1002/advs.202412423 |
| [75] |
Li J, Zhang D, Yang F, Zhang Q, Pan S, et al. 2024. TrG2P: a transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield. Plant Communications 5:100975 doi: 10.1016/j.xplc.2024.100975 |
| [76] |
Ren Y, Wu C, Zhou H, Hu X, Miao Z. 2024. Dual-extraction modeling: a multi-modal deep-learning architecture for phenotypic prediction and functional gene mining of complex traits. Plant Communications 5:101002 doi: 10.1016/j.xplc.2024.101002 |
| [77] |
Xiang Y, Xia C, Li L, Wei R, Rong T, et al. 2024. Genomic prediction of yield-related traits and genome-based establishment of heterotic pattern in maize hybrid breeding of Southwest China. Frontier in Plant Science 15:1441555 doi: 10.3389/fpls.2024.1441555 |
| [78] |
Montesinos-López A, Crespo-Herrera L, Dreisigacker S, Gerard G, Vitale P, et al. 2024. Deep learning methods improve genomic prediction of wheat breeding. Frontiers in Plant Science 15:1324090 doi: 10.3389/fpls.2024.1324090 |
| [79] |
Chen S, Du T, Huang Z, He K, Yang M, et al. 2024. The Spartina alterniflora genome sequence provides insights into the salt-tolerance mechanisms of exo-recretohalophytes. Plant Biotechnology Journal 22:2558−74 doi: 10.1111/pbi.14368 |
| [80] |
Song JM, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45 doi: 10.1038/s41477-019-0577-7 |
| [81] |
Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, et al. 2024. Origin and evolution of the bread wheat D genome. Nature 633:848−55 doi: 10.1038/s41586-024-07808-z |
| [82] |
Benegas G, Batra SS, Song YS. 2023. DNA language models are powerful predictors of genome-wide variant effects. Proceedings of the National Academy of Sciences of the United States of America 120:e2311219120 doi: 10.1073/pnas.2311219120 |
| [83] |
Benegas G, Albors C, Aw AJ, Ye C, Song YS. 2025. A DNA language model based on multispecies alignment predicts the effects of genome-wide variants. Nature Biotechnology doi: 10.1038/s41587-024-02511-w |
| [84] |
Levy B, Xu Z, Zhao L, Kremling K, Altman R, et al. 2022. FloraBERT: cross-species transfer learning withattention-based neural networks for geneexpression prediction. Research Square Preprint |
| [85] |
Liu G, Chen L, Wu Y, Han Y, Bao Y, et al. 2025. PDLLMs: a group of tailored DNA large language models for analyzing plant genomes. Molecular Plant 18:175−78 doi: 10.1016/j.molp.2024.12.006 |
| [86] |
Zhang Y, Chen G, Deng L, Gao B, Yang J, et al. 2023. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice. Nucleic Acids Research 51:9001−18 doi: 10.1093/nar/gkad658 |