| [1] |
Liu HH, Ma YS, Wang BZ, Jie HD, Xiang SJ, et al. 2021. Morphological and molecular characters on a new species of Polygonatum hunanense from Hunan , China. Crop Research 35(1):88−94 (in Chinese) doi: 10.16848/j.cnki.issn.1001-5280.2021.01.15 |
| [2] |
Yu M, Yang MS, Yang TG, Liao SH, Liu JJ, et al. 2022. Relative molecular mass distribution and monosaccharide composition of polysaccharides in Polygonatum kingianum var. grandifolium. China Journal of Chinese Materia Medica 47(13):3439−46 (in Chinese) doi: 10.19540/j.cnki.cjcmm.20220412.101 |
| [3] |
Shi Y, Yang T, Yang M, Yu M, Zhang X. 2022. Polygonati Rhizoma: a crop with potential of being consumed as food and medicine. China Journal of Chinese Materia Medica 47(4):1132−35 (in Chinese) |
| [4] |
Luo L, Qiu Y, Gong L, Wang W, Wen R. 2022. A review of Polygonatum Mill. genus: its taxonomy, chemical constituents, and pharmacological effect due to processing changes. Molecules 27:4821 doi: 10.3390/molecules27154821 |
| [5] |
Song TL, Zhang Y, Xiao Q, Wang HF, Li HX, et al. 2024. Research progress on chemical composition and medicinal value of Polygonatum sibiricum. Chinese Archives of Traditional Chinese Medicine 42(11):119−26 doi: 10.13193/j.issn.1673-7717.2024.11.024 |
| [6] |
Xi J, Wu M, Huang S, Xia X. 2024. The current situation and strategy optimization of Polygonatum sibiricum chain under the background of medicinal and edible homology. Market Modernization 2024(15):146−48 (in Chinese) doi: 10.14013/j.cnki.scxdh.2024.15.014 |
| [7] |
Shu K, Liu XD, Xie Q, He ZH. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9:34−45 doi: 10.1016/j.molp.2015.08.010 |
| [8] |
Zhang H, Zhu J, Gong Z, Zhu J. 2022. Abiotic stress responses in plants. Nature Reviews. Genetics 23:104−19 doi: 10.1038/s41576-021-00413-0 |
| [9] |
Xie Z, Nolan TM, Jiang H, Yin Y. 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 10:228 doi: 10.3389/fpls.2019.00228 |
| [10] |
Hawkins SFC, Guest PC. 2017. Multiplex analyses using real-time quantitative PCR. Methods in Molecular Biology 1546:125−33 doi: 10.1007/978-1-4939-6730-8_8 |
| [11] |
Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, et al. 2019. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends in Biotechnology 37:761−74 doi: 10.1016/j.tibtech.2018.12.002 |
| [12] |
Ma L, Duan Q, Cui G, Du W, Jia W, et al. 2021. Selection and validation of reference genes for qRT-PCR analysis of the correlated genes in flower pigments biosynthesis pathway of Anemone obtusiloba. Acta Horticulturae Sinica 48(2):377−88 (in Chinese) doi: 10.16420/j.issn.0513-353x.2020-0306 |
| [13] |
Ye YJ, Xie DJ, Yang DM, Huang X, Chen LG, et al. 2020. Selection of reference genes for quantitative real-time PCR in Morinda officinalis. Chinese Traditional and Herbal Drugs 51(4):1060−68 (in Chinese) doi: 10.7501/j.issn.0253-2670.2020.04.033 |
| [14] |
Zhang DH, Sun YL, Zhao L, Chou MX. 2015. Reference gene selection for quantitative real-time PCR normalization in Medicago Lupulina under zinc stress. China Environmental Science 35(3):833−38 (in Chinese) |
| [15] |
Zhang JR, Feng YY, Yang MJ, Xiao Y, Liu YS, et al. 2022. Systematic screening and validation of reliable reference genes for qRT-PCR analysis in Okra (Abelmoschus esculentus L. ). Scientific Reports 12:12913 doi: 10.1038/s41598-022-16124-3 |
| [16] |
Peng D, Luo M, Guo X, Li M, Wei J. 2024. Selection of reference genes for quantitative real-time PCR analysis in Angelica sinensis. Chinese Traditional and Herbal Drugs 55(1):269−78 (in Chinese) |
| [17] |
Ming R, Li L, Yao S, Huang R, Tan Y, Huang D. 2022. Selection and validation of reference genes for quantitative real-time PCR analysis in Gynostemma pentaphyllum. Journal of Chinese Medicinal Materials 45(5):1070−75 (in Chinese) doi: 10.13863/j.issn1001-4454.2022.05.010 |
| [18] |
Wang W, Hu S, Cao Y, Chen R, Wang Z, et al. 2021. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Molecular Biology Reports 48:1115−26 doi: 10.1007/s11033-021-06153-y |
| [19] |
Li H, Huang W, Liu X, Zhu X, Ren X, et al. 2023. Screening and validation of reference genes for real-time fluorescence quantitative RT-qPCR in Lycium. Jiangsu Agricultural Sciences 51(9):41−51 (in Chinese) doi: 10.15889/j.issn.1002-1302.2023.09.006 |
| [20] |
Li LX, Wang ZG, Zhuge F, Jiang B. 2025. Effects of drought stress simulated by PEG-6000 on seed germination and seedling drought tolerance of Dalbergia hupeana hance. Modern Agricultural Science and Technology 2025(2):89−94 (in Chinese) doi: 10.3969/j.issn.1007-5739.2025.02.025 |
| [21] |
Zhang B, Lu K, Zhang X, Wu R. 2025. Root development and genetic regulation in Populus euphratica under salt stress. Journal of Beijing Forestry University 47(1):72−84 (in Chinese) |
| [22] |
Han J, Wang J, Liu S, Leng Y, He J, et al. 2023. Effects of cadmium stress on seed germination and seedling growth of soybean. Journal of Shenyang University (Natural Science) 35(2):108−15 (in Chinese) doi: 10.16103/j.cnki.21-1583/n.2023.02.004 |
| [23] |
Honi U, Amin MR, Kabir SMT, Bashar KK, Moniruzzaman M, et al. 2020. Genome-wide identification, characterization and expression profiling of gibberellin metabolism genes in jute. BMC Plant Biology 20:306 doi: 10.1186/s12870-020-02512-2 |
| [24] |
Li Z, Li B, Zhang J, Wang H, Wang M, et al. 2023. GA Associated Dwarf 5 encodes an ent-kaurenoic acid oxidase required for maize gibberellin biosynthesis and morphogenesis. The Crop Journal 11:1742−51 doi: 10.1016/j.cj.2023.04.008 |
| [25] |
Prasetyaningrum P, Mariotti L, Valeri MC, Novi G, Dhondt S, et al. 2020. Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. Plant Physiology 185:228−39 doi: 10.1093/plphys/kiaa019 |
| [26] |
Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin Localization and Transport in Plants. Trends in Plant Science 23:410−21 doi: 10.1016/j.tplants.2018.02.005 |
| [27] |
Jin J, Lü YQ, He WZ, Shu ZF, Ye JH, et al. 2023. Effects of different shade treatments on the biosynthesis of main phytohormones in the leaves of tea plants. Journal of Zhejiang University (Agriculture and Life Sciences) 49(1):45−54 (in Chinese) doi: 10.3785/j.issn.1008-9209.2021.12.303 |
| [28] |
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1 doi: 10.1186/gb-2002-3-7-research0034 |
| [29] |
Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64:5245−50 doi: 10.1158/0008-5472.CAN-04-0496 |
| [30] |
Cui YQ, Zhu ZS, Guo QS, Lai Q, Xu B. 2022. Screening of internal referencegenes by quantitative real-time PCR in Sedum sarmentosum. Molecular Plant Breeding Online First:1−8 (in Chinese) |
| [31] |
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509−15 doi: 10.1023/B:BILE.0000019559.84305.47 |
| [32] |
Xie F, Wang J, Zhang B. 2023. RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Functional & Integrative Genomics 23:125 doi: 10.1007/s10142-023-01055-7 |
| [33] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
| [34] |
Pu ZY, Yang YJ, Zhang AM, Li GZ, Yu JD, et al. 2023. Expression and stability analysis of seven candidate reference genes in different tissues of Vaccinium dunalianum wight. Journal of Yunnan Agricultural University (Natural Science) 38(5):868−77 (in Chinese) doi: 10.12101/j.issn.1004-390X(n).202208036 |
| [35] |
Li DD, Hu B, Wang Q, Wu W. 2017. The research on reference genes in medicinal plant. Molecular Plant Breeding 15(3):903−10 (in Chinese) doi: 10.13271/j.mpb.015.000903 |
| [36] |
Wang S, Dang K, Niu J, Qiang Y, Wang Z. 2017. Screening of reference genes based on quantitative real-time PCR analysis in Polygonatum sibiricum. Genomics and Applied Biology 36(11):4770−77 (in Chinese) doi: 10.13417/j.gab.036.004770 |
| [37] |
Yang Y, Ye BH, Song QY, Chen YW, Hu CJ, et al. 2020. Selection and validation of internal reference genes for qPCR in Polygonatum cyrtonema tubers at different development stages and in response to abiotic stress. China Journal of Chinese Materia Medica 45(24):5967−75 (in Chinese) doi: 10.19540/j.cnki.cjcmm.20200927.101 |
| [38] |
Qian H, Xu Z, Cong K, Zhu X, Zhang L, et al. 2021. Transcriptomic responses to drought stress in Polygonatum kingianum tuber. BMC plant biology 21:537 doi: 10.1186/s12870-021-03297-8 |
| [39] |
Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80:75−84 doi: 10.1007/s11103-012-9885-2 |
| [40] |
Feng T, Jiang Y, Jia Q, Han R, Wang D, et al. 2022. Transcriptome analysis of different sections of rhizome in Polygonatum sibiricum Red. and mining putative genes participate in polysaccharide biosynthesis. Biochemical Genetics 60:1547−66 doi: 10.1007/s10528-022-10183-x |
| [41] |
Liao D, An R, Wei J, Wang D, Li X, et al. 2021. Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds. BMC plant biology 21:370 doi: 10.1186/s12870-021-03147-7 |
| [42] |
Zhang S, Shi Y, Huang L, Wang C, Zhao D, et al. 2020. Comparative transcriptomic analysis of rhizomes, stems, and leaves of Polygonatum odoratum (Mill.) Druce reveals candidate genes associated with polysaccharide synthesis. Gene 744:144626 doi: 10.1016/j.gene.2020.144626 |
| [43] |
Pan G, Jin J, Liu H, Zhong C, Xie J, et al. 2024. Integrative analysis of the transcriptome and metabolome provides insights into polysaccharide accumulation in Polygonatum odoratum (Mill.) Druce rhizome. PeerJ 12:e17699 doi: 10.7717/peerj.17699 |
| [44] |
Lu J, Yao J, Pu J, Wang D, Liu J, et al. 2023. Transcriptome analysis of three medicinal plants of the genus Polygonatum: identification of genes involved in polysaccharide and steroidal saponins biosynthesis. Frontiers in Plant Science 14:1293411 doi: 10.3389/fpls.2023.1293411 |
| [45] |
Zhou B, Cao C, Liu C. 2007. Advances in research on translation elongation factor 1 alpha. Letters in Biotechnology 18(2):281−84 (in Chinese) |
| [46] |
He C, Luo C, Yan J, Liu W, Wang M, et al. 2024. Screening and evaluation of reference genes for real-time quantitative PCR in wax gourd. Acta Horticulturae Sinica 51(4):748−60 (in Chinese) doi: 10.16420/j.issn.0513-353x.2023-0343 |
| [47] |
Martin F, Ménétret JF, Simonetti A, Myasnikov AG, Vicens Q, et al. 2016. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nature Communications 7:12622 doi: 10.1038/ncomms12622 |
| [48] |
Pang Q, Li Z, Luo S, Chen R, Jin Q, et al. 2017. Selection and stability analysis of reference gene for qRT-PCR in eggplant under high temperature stress. Acta Horticulturae Sinica 44(3):475−86 (in Chinese) doi: 10.16420/j.issn.0513-353x.2016-0831 |
| [49] |
Zhou XH, Liu J, Zhuang Y. 2014. Selection of appropriate reference genes in Solanum aculeatissimum for quantitative gene expression studies under different experimental conditions. Acta Horticulturae Sinica 41(8):1731−38 (in Chinese) |
| [50] |
Zhang YF, Zhao LJ, Zeng YL. 2014. Selection and application of reference genes for gene expression studies. Plant Physiology Journal 50(8):1119−25 (in Chinese) doi: 10.13592/j.cnki.ppj.2014.0201 |
| [51] |
Kundu A, Patel A, Pal A. 2013. Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant cell reports 32:1647−58 doi: 10.1007/s00299-013-1478-2 |
| [52] |
Velada I, Ragonezi C, Arnholdt-Schmitt B, Cardoso H. 2014. Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS ONE 9:e115206 doi: 10.1371/journal.pone.0115206 |
| [53] |
Liang F, Xu SP, Zhang Y, Wang MF, Cui B. 2022. PhPP2Aa as reference gene in Phalaenopsis under low-temperature stress. Chinese Journal of Tropical Crops 43(7):1338−46 (in Chinese) |
| [54] |
Løvdal T, Lillo C. 2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry 387:238−42 doi: 10.1016/j.ab.2009.01.024 |
| [55] |
Zhou L, Zhao Y, Li X, Gui H, Wang Y, et al. 2022. Screening of the reference genes for RT-qPCR analysis of gene expressions in Termitomyces clypeatus. Mycosystema 41(10):1597−606 (in Chinese) doi: 10.13346/j.mycosystema.22003 |
| [56] |
Tang F, Chu L, Shu W, He X, Wang L, et al. 2019. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. Plant Methods 15:35 doi: 10.1186/s13007-019-0420-1 |
| [57] |
Zhao XY, Luo YH, Cai HB, Zhou Y, Tu M. 2024. Selection of reference genes in Ganoderma pseudoferreum for Studying a rubber tree disease. Fujian Journal of Agricultural Sciences 39(5):615−22 (in Chinese) doi: 10.19303/j.issn.1008-0384.2024.05.014 |
| [58] |
Wang SX, Zhu LL, Ding YQ, Zhang XX, Li XJ, et al. 2024. Screening and evaluation of reference genes for quantitative real-time PCR in Achyranthes bidentata. Molecular Plant Breeding Online First:1−11 (in Chinese) |