| [1] |
Tesla N. 1999. High frequency oscillators for electro-therapeutic and other purposes. Proceedings of the IEEE 87:1282 doi: 10.1109/JPROC.1999.771079 |
| [2] |
Hui SYR, Ho WWC. 2005. A new generation of universal contactless battery charging platform for portable consumer electronic equipment. IEEE Transactions on Power Electronics 20:620−27 doi: 10.1109/TPEL.2005.846550 |
| [3] |
Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, et al. 2007. Wireless power transfer via strongly coupled magnetic resonances. Science 317:83−86 doi: 10.1126/science.1143254 |
| [4] |
Zhang K, Dai F, Li X, Yan Z, Zhang F, et al. 2023. Analysis of power transfer characteristics of IPT system with near field magnetic coupling. IEEE Transactions on Electromagnetic Compatibility 65:890−99 doi: 10.1109/TEMC.2023.3248043 |
| [5] |
Duan B, Huang Y. 2023. Editorial for the special issue on microwave wireless power transfer technology. Engineering 30:1−2 doi: 10.1016/j.eng.2023.09.009 |
| [6] |
Mohsan SAH, Qian H, Amjad H. 2023. A comprehensive review of optical wireless power transfer technology. Frontiers of information technology & electronic engineering 24:767−800 doi: 10.1631/FITEE.2100443 |
| [7] |
Wang CS, Covic GA, Stielau OH. 2024. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Transactions on Industrial Electronics 51:148−57 doi: 10.1109/TIE.2003.822038 |
| [8] |
Zhu G, Gao D. 2022. Analytical and experimental investigations of optimal load impedance in LCC-compensated inductive power transfer systems. eTransportation 11:100153 doi: 10.1016/j.etran.2021.100153 |
| [9] |
Cai C, Wang J, Liu R, Fang Z, Zhang P, et al. 2019. Resonant wireless charging system design for 110-kV high-voltage transmission line monitoring equipment. IEEE Transactions on Industrial Electronics 66:4118−29 doi: 10.1109/TIE.2018.2808904 |
| [10] |
Yang L, Ren L, Shi Y, Wang M, Geng Z. 2023. Analysis and design of an S/S/P-compensated three-coil structure WPT system with constant current and constant voltage output. IEEE Journal of Emerging and Selected Topics in Power Electronics 11:2487−500 doi: 10.1109/JESTPE.2022.3200420 |
| [11] |
Zhu X, Liu C, Su H, Miao Y, Cheng H. 2023. Design of improved four-coil structure with high uniformity and effective coverage rate. Heliyon 9:e15193 doi: 10.1016/j.heliyon.2023.e15193 |
| [12] |
Budhia M, Covic G, Boys J. A new IPT magnetic coupler for electric vehicle charging systems. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 7−10 November 2010, Glendale, AZ, USA. USA: IEEE. pp. 2487−92. doi: 10.1109/IECON.2010.5675350 |
| [13] |
Chen L, Zhu C, Ben T, Wu F. 2024. China. A rice-shaped wireless power trans-fer coil structure. CN Patent No. 202210232453.1 |
| [14] |
Prosen N, Domajnko J, Milanovič M. 2021. Wireless power transfer using double DD Coils. Electronics 10:2528 doi: 10.3390/electronics10202528 |
| [15] |
Li Y, Liu L, Yang Q, Zhao J. 2020. China. A Taiji-shaped wireless power transfercoil structure. CN Patent No. 201810798910.7 |
| [16] |
Chen L, Zhu C, Ben T. 2021. China. An asymmetric 'LD' wireless power transfercoil structure and its application. CN Patent No. 112953023A |
| [17] |
Kong L, Li H, Pan B, Wang Y. 2022. Research on quadruple D square coil with high misalignment tolerance for wireless power transfer. Transactions of China Electrotechnical Society 37:3361−71 doi: 10.19595/j.cnki.1000-6753.tces.210651 |
| [18] |
Dai X, Li L, Yu X, Li Y, Sun Y. 2016. Multi-degree-of-freedom pick-up mechanism of wireless power transfer systems based on the regular tetrahedron. Proceedings of the Chinese Society of Electrical Engineering 36:6460−67 doi: 10.13334/j.0258-8013.pcsee.152575 |
| [19] |
Chen YX, Tang TN, Chen JQ, Zhang QY, Wang S, et al. 2022. Optimization design of multi-receiver wireless power transfer system based on a spherical coil. Engineering Journal of Wuhan University 55(5):503−9 doi: 10.14188/j.1671-8844.2022-05-009 |
| [20] |
Zhuang H, Wang W, Yan G. 2023. Omnidirectional wireless power transfer system using modified Saddle-shaped coil pair for implantable capsule robots. IEEE Transactions on Power Electronics 38:11664−72 doi: 10.1109/TPEL.2023.3270501 |
| [21] |
Abou Houran M, Yang X, Chen W. 2018. Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics. Electronics 7:296−341 doi: 10.3390/electronics7110296 |
| [22] |
Shevchenko V, Husev O, Strzelecki R, Pakhaliuk B, Poliakov N, et al. 2019. Compensation topologies in IPT systems: standards, requirements, classification, analysis, comparison and application. IEEE Access 7:120559−80 doi: 10.1109/ACCESS.2019.2937891 |
| [23] |
Venkatesan M, Rajamanickam N, Vishnuram P, Bajaj M, Blazek V, et al. 2022. A review of compensation topologies and control techniques of bidirectional wireless power transfer systems for electric vehicle applications. Energie 15:7816−45 doi: 10.3390/en15207816 |
| [24] |
Luo S, Yao Z, Wei X, Ma H. 2023. Balanced design method for LCL/LCL compensation achieving wide load range and high misalignment tolerance. 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), 10-13 November 2023, Guangzhou, China. USA: IEEE. DOI: 10.1109/PEAS58692.2023.10395462 |
| [25] |
Andure SS, Thosar AG, Yeole DS. 2024. Performance analysis of double-sided LCC compensation topology. 2024 4th International Conference on Intelligent Technologies (CONIT), 21−23 June 2024, Bangalore, India. USA: IEEE. doi: 10.1109/CONIT61985.2024.10626003 |
| [26] |
Li S, Li W, Deng J, Nguyen TD, Mi CC. 2015. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Transactions on Vehicular Technology 64:2261−73 doi: 10.1109/TVT.2014.2347006 |
| [27] |
Lu Y, Ge D, Meng L, Sun C, Tang Q, et al. 2024. A novel optimization method of compensation network parameters for LCC topology wireless power transfer system with anti-offset characteristics. IEEE Access 12:5960−72 doi: 10.1109/ACCESS.2023.3347738 |
| [28] |
Balaji C, Renugopal V, Selvaraj J, Balasundaram G, Savio AD, et al. 2023. Design and performance study of LCC-LCC and LCC-S compensation network for wireless charging of EV battery. 2023 IEEE International Transportation Electrification Conference (ITEC-India), 12−15 December 2023, Chennai, India. USA: IEEE. doi: 10.1109/ITEC-INDIA59098.2023.10471513 |
| [29] |
Liu X, Song X, Yuan X. 2022. Compensation optimization of the relay coil in a strong coupled coaxial three-coil wireless power transfer system. IEEE Transactions on Power Electronics 37:4890−902 doi: 10.1109/TPEL.2021.3126860 |
| [30] |
Yang F, Liu Y, Han Y, Chen J, Cheng S, et al. 2023. Misalignment tolerance improvement for loosely coupled transformer of IPT systems via an intermediate coil with detuned compensation. IEEE Access 11:90181−89 doi: 10.1109/ACCESS.2023.3306955 |
| [31] |
Zhang X, Han D, Sha L, Yang Q, Wang F. 2022. An anti-offset method under flux-sharing multi-coupling mode for wireless power transmission system. Transactions of China Electrotechnical Society 37:5359−68 doi: 10.19595/j.cnki.1000-6753.tces.211158 |
| [32] |
Dai Z, Li M, Xu H, Ji M, Zhang L. 2024. Strong misalignment tolerance wireless power transfer with active adjustment of magnetic shielding. AIP Advances 14:015320 doi: 10.1063/5.0186819 |
| [33] |
Huang Z, Zou B, Huang Z, Ho-Ching Iu H, Tse CK. 2025. A single-stage IPT converter with optimal efficiency tracking and constant voltage output against dynamic variations of coupling and load. IEEE Transactions on Transportation Electrification 11:1582−92 doi: 10.1109/TTE.2024.3407717 |
| [34] |
Zhou X, Wang J, Yang L. 2024. A Light-Load Efficiency Improvement Technique for an Inductive Power Transfer System through a Reconfigurable Circuit. Energies 17:3024 doi: 10.3390/en17123024 |
| [35] |
Liu J, Wang C, Wang X, Ge W. 2020. Frequency splitting and transmission characteristics of MCR-WPT system considering non-linearities of compensation capacitors. Electronics 9:141 doi: 10.3390/electronics9010141 |
| [36] |
Liu X, Yuan X, Xia C, Wu X. 2021. Analysis and utilization of the frequency splitting phenomenon in wireless power transfer systems. IEEE Transactions on Power Electronics 36:3840−51 doi: 10.1109/TPEL.2020.3025480 |
| [37] |
Huang Z, Wong SC, Tse CK. 2019. An inductive-power-transfer converter with high efficiency throughout battery-charging process. IEEE Transactions on Power Electronics 34:10245−55 doi: 10.1109/TPEL.2019.2891754 |
| [38] |
Cheng C, Lu F, Zhou Z, Li W, Deng Z, et al. 2020. A load-independent LCC-compensated wireless power transfer system for multiple loads with a compact coupler design. IEEE Transactions on Industrial Electronics 67:4507−15 doi: 10.1109/TIE.2019.2931260 |
| [39] |
Wang Y, Zhao S, Zhang H, Lu F. 2022. High-efficiency bilateral S-SP compensated multiload IPT system with constant-voltage outputs. IEEE Transactions on Industrial Informatics 18:901−10 doi: 10.1109/TII.2021.3072394 |
| [40] |
Zhang H, Lu F, Hofmann H, Liu W, Mi CC. 2016. A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application. IEEE Transactions on Power Electronics 31:8541−51 doi: 10.1109/TPEL.2016.2520963 |
| [41] |
Lu F, Zhang H, Mi C. 2018. A two-plate capacitive wireless power transfer system for electric vehicle charging applications. IEEE Transactions on Power Electronics 33:964−69 doi: 10.1109/TPEL.2017.2735365 |
| [42] |
Zou LJ, Hu AP, Su YG. 2017. A single-wire capacitive power transfer system with large coupling alignment tolerance. 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 20−22 May 2017, Chongqing, China. USA: IEEE. doi: 10.1109/WoW.2017.7959372 |
| [43] |
Su Y, Liu Z, Hu H, Sun Y. 2022. China. Triplate electric field coupling wireless power transfer system and its parameter design method. CN Patent No. 202210509761.4 |
| [44] |
Liu Y, Wu T, Fu M. 2021. Interleaved Capacitive Coupler for Wireless Power Transfer. IEEE Transactions on Power Electronics 36:13526−35 doi: 10.1109/TPEL.2021.3086629 |
| [45] |
Rong E, Sun P, Qiao K, Zhang X, Yang G, et al. 2024. Six-plate and hybrid-dielectric capacitive coupler for underwater wireless power transfer. IEEE Transactions on Power Electronics 39:2867−81 doi: 10.1109/TPEL.2023.3334888 |
| [46] |
Zhang H, Lu F, Hofmann H, Liu W, Mi CC. 2018. Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer. IEEE Transactions on Power Electronics 33:665−75 doi: 10.1109/TPEL.2017.2662583 |
| [47] |
Liu C, Hu AP, Dai X. 2011. A contactless power transfer system with capacitively coupled matrix pad. 2011 IEEE Energy Conversion Congress and Exposition, 17−22 September 2011, Phoenix, AZ, USA. USA: IEEE. doi: 10.1109/ECCE.2011.6064240 |
| [48] |
Zhou W, Su YG, Xie SY, Chen L, Dai X, et al. 2017. An interference isolation method for wireless power and signal parallel transmissions on CPT systems. Journal of Power Electronics 17:305−13 doi: 10.6113/JPE.2017.17.1.305 |
| [49] |
Mishra SK, Adda R, Sekhar S, Joshi A, Rathore AK. 2016. Power transfer using portable surfaces in capacitively coupled power transfer technology. IET Power Electronics 5:997−1008 doi: 10.1049/iet-pel.2015.033 |
| [50] |
Gu W, Qiu D, Shu X, Zhang B, Xiao W, et al. 2023. A constant output capacitive wireless power transfer system based on parity-time symmetric. IEEE Transactions on Circuits and Systems. II, Express briefs 70:2585−89 doi: 10.1109/TCSII.2023.3237687 |
| [51] |
Li H, Li G, Jin X, Li J, Xu G. 2022. A LC-CLL compensated capacitive wireless power transfer system in fresh water. 2022 5th International Conference on Power and Energy Applications (ICPEA), 18−20 November 2022, Guangzhou, China. USA: IEEE. doi: 10.1109/ICPEA56363.2022.10052278 |
| [52] |
Zhang H, Lu F, Hofmann H, Mi C. 2016. A loosely coupled capacitive power transfer system with LC compensation circuit topology. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 18−22 September 2016, Milwaukee, WI, USA. USA: IEEE. doi: 10.1109/ECCE.2016.7854702 |
| [53] |
Chen T, Cheng C, Zhang X, Li G, Guo Y, et al. 2024. A double-sided LCL-compensated network for the strongly coupled CPT system with minimum plate voltage stresses. IEEE Journal of Emerging and Selected Topics in Power Electronics 12:4275−87 doi: 10.1109/JESTPE.2024.3400874 |
| [54] |
Lu F, Zhang H, Hofmann H, Mi C. 2016. A CLLC-compensated high power and large air-gap capacitive power transfer system for electric vehicle charging applications. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 20−24 March 2016, Long Beach, CA, USA. USA: IEEE. doi: 10.1109/APEC.2016.7468099 |
| [55] |
Lu F, Zhang H, Hofmann H, Mi C. 2015. A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Transactions on Power Electronics 30:6011−14 doi: 10.1109/TPEL.2015.2446891 |
| [56] |
Xia J, Yuan X, Lu S, Li J, Luo S, et . 2022. A Two-stage parameter optimization method for capacitive power transfer systems. IEEE Transactions on Power Electronics 37:1102−17 doi: 10.1109/TPEL.2021.3097344 |
| [57] |
Chai R, Mortazawi A. 2021. A new coupling insensitive nonlinear capacitive resonant wireless power transfer circuit. 2021 IEEE Wireless Power Transfer Conference (WPTC), 1−4 June 2021, San Diego, CA, USA. USA: IEEE. doi: 10.1109/WPTC51349.2021.9458093 |
| [58] |
Herpers C, Rouse CD. 2023. Lateral misalignment and foreign object detection in resonant capacitive power transfer. 2023 IEEE Wireless Power Technology Conference and Expo (WPTCE), 4−8 June 2023, San Diego, CA, USA. USA: IEEE. doi: 10.1109/WPTCE56855.2023.10215924 |
| [59] |
Lecluyse C, Baayeh AG, Minnaert B, Kleemann M. 2024. Modeling, simulation and experimental validation of solid media in capacitive wireless power transfer. Sensors and Actuators A: Physical 367:115061 doi: 10.1016/j.sna.2024.115061 |
| [60] |
Maji S, Etta D, Afridi K K. 2023. A frequency quadrupler inverter architecture for high-power high-frequency capacitive wireless power transfer systems. 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), 19−23 March 2023, Orlando, FL, USA. USA: IEEE. doi: 10.1109/APEC43580.2023.10131282 |
| [61] |
Vincent D, Praneeth AVJS, Williamson SS. 2022. Feasibility analysis of a reduced capacitive wireless power transfer system model for transportation electrification applications. IEEE Journal of Emerging and Selected Topics in Industrial Electronics 3:474−81 doi: 10.1109/JESTIE.2021.3116523 |
| [62] |
Chen X, Yue Z. 2019. Frequency splitting analysis of electric-field coupled wireless power transfer system. 2019 3rd International Conference on Circuits, System and Simulation (ICCSS), 13−15 June 2019, Nanjing, China. USA: IEEE. doi: 10.1109/CIRSYSSIM.2019.8935607 |
| [63] |
Suarez C, Kalmes M, Suffeleers J, Martinez W. 2020. frequency splitting in an LCLC capacitive wireless power transfer system for electric vehicle charging. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 18−21 October 2020, Singapore. USA: IEEE. doi: 10.1109/IECON43393.2020.9254846 |
| [64] |
Mostafa TM, Bui D, Muharam A, Hu AP, Hattori R. 2020. Load effect analysis and maximum power transfer tracking of CPT system. IEEE Transactions on Circuits and Systems I: Regular Papers 67:2836−48 doi: 10.1109/TCSI.2020.2981195 |
| [65] |
Xue Z, Chau KT, Liu W, Pang H, Hou Y. 2024. Wireless smart charging station for multi-unmanned aerial vehicles. 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), 8−11 May 2024, Kyoto, Japan. USA: IEEE. doi: 10.1109/WPTCE59894.2024.10557446 |
| [66] |
Liu W, Luo B, He X, Wang Z, Mai R. 2025. Analysis of compensation topology with constant-voltage/current output for multiple loads capacitive power transfer system. CSEE Journal of Power and Energy System 11(2):802−14 doi: 10.17775/CSEEJPES.2021.07100 |
| [67] |
Chen T, Cheng C, Cheng H, Wang C, Mi CC. 2022. A multi-load capacitive power relay system with load-independent constant current outputs. IEEE Transactions on Power Electronics 37:6144−55 doi: 10.1109/TPEL.2021.3123542 |
| [68] |
Liu W, Luo B, Xu Y, Pan S, Zhou W, et al. 2022. A multi-load capacitive power transfer system with load-independent characteristic for reefer container application. IEEE Transactions on Power Electronics 37:6194−205 doi: 10.1109/TPEL.2021.3132357 |
| [69] |
Lu F, Zhang H, Hofmann H, Mi CC. 2016. An inductive and capacitive combined wireless power transfer system with LC-compensated topology. IEEE Transactions on Power Electronics 31:8471−82 doi: 10.1109/TPEL.2016.2519903 |
| [70] |
Luo B, Long T, Mai R, Dai R, He Z, et al. 2018. Analysis and design of hybrid inductive and capacitive wireless power transfer for high- power applications. IET Power Electronics 11:2263−70 doi: 10.1049/iet-pel.2018.5279 |
| [71] |
Luo Y, Mai R, Luo B, Long T. 2018. Design and implement of an inductive and capacitive combined wireless power transfer system. Diangong Jishu Xuebao/transactions of China Electrotechnical Society 33:287−94 doi: 10.19595/j.cnki.1000-6753.tces.180883 |
| [72] |
Vincent D, Huynh PS, Williamson SS. 2019. A novel three leg inverter for high power hybrid inductive and capacitive wireless power transfer system. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 14−17 October 2019, Lisbon, Portugal. USA: IEEE. doi: 10.1109/IECON.2019.8927761 |
| [73] |
Gao X, Liu C, Zhou H, Hu W, Huang Y, et al. 2021. Design and analysis of a new hybrid wireless power transfer system with a space-saving coupler structure. IEEE Transactions on Power Electronics 36:5069−81 doi: 10.1109/TPEL.2020.3027473 |
| [74] |
Chen X, Yu S, Li RTH, Yang X. 2018. An efficient hybrid wireless power transfer system with less gain fluctuation. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 4−7 November 2018, Shenzhen, China. USA: IEEE. doi: 10.1109/PEAC.2018.8590584 |
| [75] |
Qing X, Li Z, Wu X, Liu Z, Zhao L, et al. 2023. A hybrid wireless power transfer system with constant and enhanced current output against load variation and coupling misalignment. IEEE Transactions on Power Electronics 38:13219−30 doi: 10.1109/TPEL.2023.3296274 |
| [76] |
Wu Y, Chen Q, Ren X, Zhang Z. 2020. A parallel-connected hybrid inductive and capacitive coupler with double-sided LCL compensation topology. 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 15-19 November 2020, Seoul, Korea (South). USA: IEEE. doi: 10.1109/WoW47795.2020.9291328 |
| [77] |
Minnaert B, Stevens N. 2018. Maximizing the power transfer for a mixed inductive and capacitive wireless power transfer system. 2018 IEEE Wireless Power Transfer Conference (WPTC), 3−7 June 2018, Montreal, QC, Canada. USA: IEEE. doi: 10.1109/WPT.2018.8639265 |
| [78] |
Luo B, Long T, Guo L, Dai R, Mai R, et al. 2020. Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application. IEEE Transactions on Industry Applications 56:3034−42 doi: 10.1109/TIA.2020.2979110 |
| [79] |
Liu G, Zhang B. 2018. Dual-coupled robust wireless power transfer based on parity-time-symmetric model. Chinese Journal of Electrical Engineering 4:50−55 doi: 10.23919/CJEE.2018.8409350 |
| [80] |
Zhang XY, Xue CD, Lin JK. 2017. Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression. IEEE Transactions on Microwave Theory and Techniques 65:4307−16 doi: 10.1109/TMTT.2017.2686858 |
| [81] |
Lu F, Zhang H, Hofmann H, Mi CC. 2017. An inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer. IEEE Transactions on Industry Applications 53:4903−13 doi: 10.1109/TIA.2017.2697838 |
| [82] |
Luo B, Long T, Guo L, Mai R, He Z. 2019. Analysis and design of hybrid inductive and capacitive wireless power transfer system. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 17−21 March 2019, Anaheim, CA, USA. USA: IEEE. doi: 10.1109/APEC.2019.8722140 |
| [83] |
Zhou W, Gao Q, Xiang L. 2021. Inductive–capacitive combined power transfer system and its power superposition characteristic for rail transit inspection vehicle charging. Measurement 185:110022 doi: 10.1016/j.measurement.2021.110022 |
| [84] |
Vincent D, Huynh PS, Williamson SS. 2022. A link-independent hybrid inductive and capacitive wireless power transfer system for autonomous mobility. IEEE Journal of Emerging and Selected Topics in Industrial Electronics 3:3211−18 doi: 10.1109/JESTIE.2021.3107754 |
| [85] |
Badwey MA, Abbasy NH, Eldallal GM. 2022. An efficient design of LC-compensated hybrid wireless power transfer system for electric vehicle charging applications. Alexandria Engineering Journal 61:6565−80 doi: 10.1016/j.aej.2021.12.016 |
| [86] |
Behnamfar M, Jafari H, Sarwat A. 2022. Development of a mixed inductive and capacitive wireless power transfer to improve misalignment performance for charging electric vehicles. 2022 IEEE Transportation Electrification Conference & Expo (ITEC), 15−17 June 2022, Anaheim, CA, USA. USA: IEEE. doi: 10.1109/ITEC53557.2022.9814029 |
| [87] |
Wang Y, Yang J, Wang K, Yang Y. 2025. Highly integrated hybrid inductive and capacitive power transfer system with asymmetrical printed-circuit-board-based self-resonator. IEEE Transactions on Power Electronics 40:10254−64 doi: 10.1109/TPEL.2025.3547902 |
| [88] |
Qiu D, Chen H, Gu W, Zhang B, Chen Y, et al. 2024. A robust parity-time-symmetric hybrid wireless power transfer system with extended coupling range. International Journal of Circuit Theory and Applications 52:6112−27 doi: 10.1002/cta.4055 |
| [89] |
Luo B, Zhou X, Long T, Mai R, He Z. 2020. Misalignment tolerance wireless power transfer system combining inductive and capacitive coupling. IET Electric Power Applications 10:1925−32 doi: 10.1049/iet-epa.2019.0874 |
| [90] |
Zhou W, Su YG, Huang L, Qing XD, Hu AP. 2019. Wireless power transfer across a metal barrier by combined capacitive and inductive coupling. IEEE Transactions on Industrial Electronics 66:4031−41 doi: 10.1109/TIE.2018.2849991 |
| [91] |
Cheng Y, Ding C, Zhou J, Wu P, Wang G. 2024. Frequency splitting suppressing of hybrid coupling WPT and transfer distance extending by rotating the transmitter. IEEE Transactions on Antennas and Propagation 72:1673−85 doi: 10.1109/TAP.2023.3334444 |
| [92] |
Badwey MA, Abbasy NH, Eldallal GM. 2022. Extended results for a developed 10 kW LC-compensated hybrid wireless power transfer system. 2022 23rd International Middle East Power Systems Conference (MEPCON), 13−15 December 2022, Cairo, Egypt. USA: IEEE. doi: 10.1109/MEPCON55441.2022.10021704 |
| [93] |
Wang F, Yang Q, Zhang X, Chen T, Li G. 2024. Enhancing misalignment tolerance in hybrid wireless power transfer system with integrated coupler via frequency tuning. IEEE Transactions on Power Electronics 39:11885−99 doi: 10.1109/TPEL.2024.3416172 |
| [94] |
Vincent D, Huynh PS, Azeez NA, Patnaik L, Williamson SS. 2019. Evolution of hybrid inductive and capacitive AC links for wireless ev charging — a comparative overview. IEEE Transactions on Transportation Electrification 5:1060−77 doi: 10.1109/TTE.2019.2923883 |
| [95] |
Vincent D, Sang PH, Williamson SS. 2017. Feasibility study of hybrid inductive and capacitive wireless power transfer for future transportation. 2017 IEEE Transportation Electrification Conference and Expo (ITEC), 22−24 June 2017, Chicago, IL, USA. USA: IEEE. pp. 229−33. doi: 10.1109/ITEC.2017.7993276 |
| [96] |
Mohamed AAS, Shaier AA, Metwally H, Selem SI. 2024. Wireless charging technologies for electric vehicles: inductive, capacitive, and magnetic gear. IET Power Electronics 17:3139−65 doi: 10.1049/pel2.12624 |
| [97] |
Zhu JQ, Ban YL, Xu RM, Mi CC. 2021. An NFC-connected coupler using IPT-CPT-combined wireless charging for metal-cover smartphone applications. IEEE Transactions on Power Electronics 36:6323−38 doi: 10.1109/TPEL.2020.3036459 |
| [98] |
Chen X, Yu S, Song S, Li RTH, Yang X, et al. 2019. Hybrid coupler for 6.78 MHz desktop wireless power transfer applications with stable open-loop gain. IET Power Electronics 12:2642−49 doi: 10.1049/iet-pel.2018.6199 |
| [99] |
Zhang X, Li G, Chen T, Wang F, Yang Q, et al. 2024. A high-efficiency underwater hybrid wireless power transfer system with low plate voltage stresses. IEEE Transactions on Power Electronics 39:10546−57 doi: 10.1109/TPEL.2024.3392375 |
| [100] |
Chai W, Liu X, Wu S, Cai C. 2024. Compact inductive and capacitive combined wireless power transfer system for unmanned aerial vehicle applications. Journal of Power Electronics 24:662−71 doi: 10.1007/s43236-023-00750-9 |
| [101] |
Bai Y. 2021. Nonlinear factors and optimal design of the HWPT system for AGV vehicles. Dissertation. Chang'an University, China. pp. 2−8 |