| [1] |
Adediran JA. 2005. Growth of tomato and lettuce seedlings in soilless media. Journal of Vegetable Science 11:5−15 doi: 10.1300/J484v11n01_02 |
| [2] |
Méndez A, Paz-Ferreiro J, Gil E, Gascó G. 2015. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Scientia Horticulturae 193:225−30 doi: 10.1016/j.scienta.2015.07.032 |
| [3] |
Chrysargyris A, Prasad M, Kavanagh A, Tzortzakis N. 2019. Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy 9:693 doi: 10.3390/agronomy9110693 |
| [4] |
Steiner C, Harttung T. 2014. Biochar as a growing media additive and peat substitute. Solid Earth 5:995−99 doi: 10.5194/se-5-995-2014 |
| [5] |
Boldrin A, Hartling KR, Laugen M, Christensen TH. 2010. Environmental inventory modelling of the use of compost and peat in growth media preparation. Resources, Conservation and Recycling 54:1250−60 doi: 10.1016/j.resconrec.2010.04.003 |
| [6] |
Fascella G, Mammano MM, D'Angiolillo F, Pannico A, Rouphael Y. 2020. Coniferous wood biochar as substrate component of two containerized Lavender species: effects on morpho-physiological traits and nutrients partitioning. Scientia Horticulturae 267:109356 doi: 10.1016/j.scienta.2020.109356 |
| [7] |
Milon AR, Chang SW, Ravindran B. 2022. Biochar amended compost maturity evaluation using commercial vegetable crops seedlings through phytotoxicity germination bioassay. Journal of King Saud University-Science 34:101770 doi: 10.1016/j.jksus.2021.101770 |
| [8] |
Brassard P, Godbout S, Raghavan V. 2016. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. Journal of Environmental Management 181:484−97 doi: 10.1016/j.jenvman.2016.06.063 |
| [9] |
Chun Y, Sheng G, Chiou CT, Xing B. 2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology 38:4649−55 doi: 10.1021/es035034w |
| [10] |
Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research 32:331−39 doi: 10.1177/0734242X14525822 |
| [11] |
Vithanage M, Bandara T, Al-Wabel MI, Abduljabbar A, Usman ARA, et al. 2018. Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperatures and application rates. Communications in Soil Science and Plant Analysis 49:635−43 doi: 10.1080/00103624.2018.1435795 |
| [12] |
Raj A, Yadav A, Arya S, Sirohi R, Kumar S, et al. 2021. Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. Science of The Total Environment 795:148722 doi: 10.1016/j.scitotenv.2021.148722 |
| [13] |
Tomczyk A, Sokołowskz Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19:191−215 doi: 10.1007/s11157-020-09523-3 |
| [14] |
Novak JM, Cantrell KB, Watts DW, Busscher WJ, Johnson MG. 2014. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments 14:330−43 doi: 10.1007/s11368-013-0680-8 |
| [15] |
Zulfiqar F, Allaire SE, Akram NA, Méndez A, Younis A, et al. 2019. Challenges in organic component selection and biochar as an opportunity in potting substrates: a review. Journal of Plant Nutrition 42:1386−401 doi: 10.1080/01904167.2019.1617310 |
| [16] |
Vaughn SF, Kenar JA, Tisserat B, Jackson MA, Joshee N, et al. 2017. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Industrial Crops and Products 97:260−67 doi: 10.1016/j.indcrop.2016.12.017 |
| [17] |
Banitalebi G, Mosaddeghi MR, Shariatmadari H. 2021. Evaluation of physico-chemical properties of biochar-based mixtures for soilless growth media. Journal of Material Cycles and Waste Management 23:950−64 doi: 10.1007/s10163-021-01181-z |
| [18] |
Dumroese RK, Heiskanen J, Englund K, Tervahauta A. 2011. Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy 35:2018−27 doi: 10.1016/j.biombioe.2011.01.053 |
| [19] |
Méndez A, Cárdenas-Aguiar E, Paz-Ferreiro J, Plaza C, Gascó G. 2017. The effect of sewage sludge biochar on peat-based growing media. Biological Agriculture & Horticulture 33:40−51 doi: 10.1080/01448765.2016.1185645 |
| [20] |
Gascó G, Cely P, Paz-Ferreiro J, Plaza C, Méndez A. 2016. Relation between biochar properties and effects on seed germination and plant development. Biological Agriculture & Horticulture 32:237−47 doi: 10.1080/01448765.2016.1166348 |
| [21] |
Prasad M, Tzortzakis N, McDaniel N. 2018. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. Journal of Environmental Management 216:89−95 doi: 10.1016/j.jenvman.2017.04.020 |
| [22] |
Vaughn SF, Byars JA, Jackson MA, Peterson SC, Eller FJ. 2021. Tomato seed germination and transplant growth in a commercial potting substrate amended with nutrient-preconditioned Eastern red cedar (Juniperus virginiana L.) wood biochar. Scientia Horticulturae 280:109947 doi: 10.1016/j.scienta.2021.109947 |
| [23] |
Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ. 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agricultural and Food Chemistry 61:2196−204 doi: 10.1021/jf3049142 |
| [24] |
Vaughn SF, Kenar JA, Thompson AR, Peterson SC. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products 51:437−43 doi: 10.1016/j.indcrop.2013.10.010 |
| [25] |
Kaushal A, Yadav RK, Singh N. 2024. Biochar application in sustainable production of horticultural crops in the new era of soilless cultivation. Biochar Production for Green Economy, eds Singh SV, Mandal S, Meena RS, Chaturvedi S, Govindaraju K. US: Academic Press. pp. 249−67. doi: 10.1016/B978-0-443-15506-2.00006-7 |
| [26] |
Yu P, Li Q, Huang L, Niu G, Gu M. 2019. Mixed hardwood and sugarcane bagasse biochar as potting mix components for container tomato and basil seedling production. Applied Sciences 9:4713 doi: 10.3390/app9214713 |
| [27] |
Hoover BK. 2018. Herbaceous perennial seed germination and seedling growth in biochar-amended propagation substrates. HortScience 53:236−41 doi: 10.21273/HORTSCI12624-17 |
| [28] |
Nair A, Carpenter B. 2016. Biochar rate and transplant tray cell number have implications on pepper growth during transplant production. HortTechnology 26:713−19 doi: 10.21273/HORTTECH03490-16 |
| [29] |
Shabir R, Li Y, Megharaj M, Chen C. 2024. Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier. Biology and Fertility of Soils 60:681−97 doi: 10.1007/s00374-024-01805-0 |
| [30] |
Garcia-Rodriguez ÁF, Moreno-Racero FJ, Garcia de Castro Barragán JM, Colmenero-Flores JM, Greggio N, et al. 2022. Influence of biochar mixed into peat substrate on lettuce growth and nutrient supply. Horticulturae 8:1214 doi: 10.3390/horticulturae8121214 |
| [31] |
Olszyk DM, Shiroyama T, Novak JM, Johnson MG. 2018. A rapid-test for screening biochar effects on seed germination. Communications in Soil Science and Plant Analysis 49:2025−41 doi: 10.1080/00103624.2018.1495726 |
| [32] |
Huang L, Yu P, Gu M. 2019. Evaluation of biochar and compost mixes as substitutes to a commercial propagation mix. Applied Sciences 9:4394 doi: 10.3390/app9204394 |
| [33] |
Altland JE, Locke JC. 2017. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. Journal of Plant Nutrition 40:1816−28 doi: 10.1080/01904167.2016.1249800 |
| [34] |
Fornes F, Belda RM. 2018. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola 75:304−12 doi: 10.1590/1678-992X-2017-0062 |
| [35] |
Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, et al. 2010. Biochar impact on development and productivity of pepper and tomato growth in fertigated soilless media. Plant and Soil 337:481−96 doi: 10.1007/s11104-010-0544-6 |
| [36] |
Liu G, Pan M, Song J, Guo M, Xu L, et al. 2022. Investigating the effects of biochar colloids and nanoparticles on cucumber early seedlings. Science of The Total Environment 804:150233 doi: 10.1016/j.scitotenv.2021.150233 |
| [37] |
Ma G, Chen X, Liu Y, Hu J, Han L, et al. 2022. Effects of compound biochar substrate coupled with water and nitrogen on the growth of cucumber plug seedlings. Agronomy 12:2855 doi: 10.3390/agronomy12112855 |
| [38] |
Meneguzzo DM, Liknes GC. 2015. Status and trends of eastern redcedar (Juniperus virginiana) in the central United States: analyses and observations based on forest inventory and analysis data. Journal of Forestry 113:325−34 doi: 10.5849/jof.14-093 |
| [39] |
Pierce AM, Reich PB. 2010. The effects of eastern red cedar (Juniperus virginiana) invasion and removal on a dry bluff prairie ecosystem. Biological Invasions 12:241−52 doi: 10.1007/s10530-009-9446-z |
| [40] |
Smith S. 2011. Eastern red-cedar: positives, negatives and management. Samuel Roberts Noble Foundation, OK. pp. 1−8. (Accessed 16 September, 2023). https://www.noble.org/ag-publications/wildlife/eastern-red-cedar/ |
| [41] |
Caterina GL, Will RE, Turton DJ, Wilson DS, Zou CB. 2014. Water use of Juniperus virginiana trees encroached into mesic prairies in Oklahoma, USA. Ecohydrology 7:1124−34 doi: 10.1002/eco.1444 |
| [42] |
Yang Z, Kumar A, Huhnke RL, Buser M Capareda S. 2016. Pyrolysis of eastern redcedar: distribution and characteristics of fast and slow pyrolysis products. Fuel 166:157−65 doi: 10.1016/j.fuel.2015.10.101 |
| [43] |
Lamichhane B, Dunn B, Singh H. 2023. Preparation of biochar for use as a soil amendment. HLA-6502. Oklahoma Cooperative Extension Service, Oklahoma State University |
| [44] |
Abdelhafez AA, Li J, Abbas MHH. 2014. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 117:66−71 doi: 10.1016/j.chemosphere.2014.05.086 |
| [45] |
Zhang H, Henderson K. 2016. Procedures used by OSU soil, water and forage analytical laboratory. PSS-2901. Oklahoma Cooperative Extension Service, US |
| [46] |
Lamichhane B, Dunn BL, Singh H, Kumar A, Norwood B. 2024. Determining Eastern red cedar biochar soilless media supplementation rates for potted ornamental kale and chrysanthemum production. HortScience 59:777−86 doi: 10.21273/HORTSCI17704-24 |
| [47] |
Kafle A, Singh S, Singh M, Venkataramani S, Saini R, et al. 2024. Effect of biochar-compost amendment on soilless media properties and cucumber seedling establishment. Technology in Horticulture 4:e001 doi: 10.48130/tihort-0023-0029 |
| [48] |
Solaiman ZM, Murphy DV, Abbott LK. 2012. Biochars influence seed germination and early growth of seedlings. Plant and Soil 353:273−87 doi: 10.1007/s11104-011-1031-4 |
| [49] |
Guo R, Zhou J, Hao W, Gu F, Liu Q, et al. 2014. Germination, growth, chlorophyll fluorescence and ionic balance in linseed seedlings subjected to saline and alkaline stresses. Plant Production Science 17:20−31 doi: 10.1626/pps.17.20 |
| [50] |
Sun Y, Gao B, Yao Y, Fang J, Zhang M, et al. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240:574−78 doi: 10.1016/j.cej.2013.10.081 |
| [51] |
Amery F, Debode J, Ommeslag S, Visser R, De Tender C, et al. 2021. Biochar for circular horticulture: feedstock related effects in soilless cultivation. Agronomy 11:629 doi: 10.3390/agronomy11040629 |
| [52] |
Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 74:1259−70 doi: 10.2136/sssaj2009.0115 |
| [53] |
Chrysargyris A, Prasad M, Kavanagh A, Tzortzakis N. 2020. Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance. Agronomy 10:1421 doi: 10.3390/agronomy10091421 |
| [54] |
Bartley PC III, Wehtje GR, Murphy AM, Foshee WG III, Gilliam CH. 2017. Mulch type and depth influences control of three major weed species in nursery container production. HortTechnology 27:465−71 doi: 10.21273/HORTTECH03511-16 |
| [55] |
Fox TE. 1979. Physical and cultural properties of cedar mulch amended growth media affecting container grown ornamental plants. Thesis. Texas A&M University, US |
| [56] |
Simiele M, Argentino O, Baronti S, Scippa GS, Chiatante D, et al. 2022. Biochar enhances plant growth, fruit yield, and antioxidant content of cherry tomato (Solanum lycopersicum L.) in a soilless substrate. Agriculture 12:1135 doi: 10.3390/agriculture12081135 |
| [57] |
Bu X, Ji H, Ma W, Mu C, Xian T, et al. 2022. Effects of biochar as a peat-based substrate component on morphological, photosynthetic and biochemical characteristics of Rhododendron delavayi Franch. Scientia Horticulturae 302:111148 doi: 10.1016/j.scienta.2022.111148 |
| [58] |
Khan MN, Lan Z, Sial TA, Zhao Y, Haseeb A, et al. 2019. Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Archives of Agronomy and Soil Science 65:1704−19 doi: 10.1080/03650340.2019.1575510 |
| [59] |
Zhang K, Wang Y, Mao J, Chen B. 2020. Effects of biochar nanoparticles on seed germination and seedling growth. Environmental Pollution 256:113409 doi: 10.1016/j.envpol.2019.113409 |
| [60] |
Naeem MA, Khalid M, Aon M, Abba G, Tahir M, et al. 2017. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science 63:2048−61 doi: 10.1080/03650340.2017.1325468 |
| [61] |
Sabatino L, Iapichino G, Mauro RP, Consentino BB, De Pasquale C. 2020. Poplar biochar as an alternative substrate for curly endive cultivated in a soilless system. Applied Sciences 10:1258 doi: 10.3390/app10041258 |
| [62] |
Zhang C, Lin Y, Tian X, Xu Q, Chen Z, et al. 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Applied Soil Ecology 112:90−96 doi: 10.1016/j.apsoil.2016.12.005 |
| [63] |
Nguyen HH, Maneepong S, Suraninpong P. 2017. Effects of potassium, calcium, and magnesium ratios in soil on their uptake and fruit quality of pummelo. Journal of Agricultural Science 9:110−21 doi: 10.5539/jas.v9n12p110 |