| [1] |
Li Z. 2009. Discussion on installation scheme of laser detection device in psds. Chinese Hi-tech Enterprises 19:46−47 |
| [2] |
Wang R, Yang Z, Kong W. 2013. Research on infrared light screen in obstacle detection of subway platform screen doors. |
| [3] |
Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Nevada, United States, 3−6 December 2012. pp. 1106−14. https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html |
| [4] |
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, San Diego, CA, USA, 7−9 May 2015. doi: 10.48550/arXiv.1409.1556 |
| [5] |
Girshick RB, Donahue J, Darrell T, Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, Columbus, OH, USA, 23−28 June 2014. USA: IEEE. pp. 580−87. doi: 10.1109/CVPR.2014.81 |
| [6] |
Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, et al. 2016. SSD: single shot multibox detector. Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, eds. Leibe B, Matas J, Sebe N, Welling M. vol. 9905. Cham: Springer. pp. 21−37. doi: 10.1007/978-3-319-46448-0_2 |
| [7] |
Kim Y. 2014. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25−29 October 2014. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1746−51. doi: 10.3115/v1/d14-1181 |
| [8] |
Zeng D, Dai Y, Li F, Wang J, Sangaiah AK. 2019. Aspect based sentiment analysis by a linguistically regularized CNN with gated mechanism. |
| [9] |
Zeng D, Liu K, Lai S, Zhou G, Zhao J. 2014. Relation classification via convolutional deep neural network. COLING 2014: 25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers, Dublin, Ireland, 23−29 August 2014. pp. 2335−44. https://aclanthology.org/C14-1220/ |
| [10] |
Fradi M, Khriji L, Machhout M, Hossen A. 2021. Automatic heart disease class detection using convolutional neural network architecture-based various optimizers-networks. |
| [11] |
Huang NF, Chou DL, Lee CA, Wu FP, Chuang AC, et al. 2020. Smart agriculture: real-time classification of green coffee beans by using a convolutional neural network. |
| [12] |
Lan S, Li D, Zeng X, Liang J, Lv Y, et al. 2019. Metro foreign object detection method, apparatus, and equipment, and metro PSD system. Patent number CN201610600750.1 |
| [13] |
Gao W, Huang J. 2019. Metro platform gap foreign object detection system. Patent number CN201910983294.7 |
| [14] |
Liu W, Dai Y, Li H, Liu L, Zhong L. 2019. Foreign object detection between PSDs and metro doors using deep neural networks. 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2−4 November 2019. USA: IEEE. pp. 762−67. doi: 10.1109/ICSAI48974.2019.9010517 |
| [15] |
Dai Y, Liu W, Li H, Liu L. 2020. Efficient foreign object detection between PSDs and metro doors via deep neural networks. |
| [16] |
Redmon J, Farhadi A. 2018. YOLOv3: an incremental improvement. |
| [17] |
Zhou X, Wang D, Krähenbühl P. 2019. Objects as points. |
| [18] |
Girshick RB. 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7−13 December 2015. USA: IEEE. pp. 1440−48. doi: 10.1109/ICCV.2015.169 |
| [19] |
Ren S, He K, Girshick RB, Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks. |
| [20] |
Lin TY, Dollár P, Girshick RB, He K, Hariharan B, et al. 2017. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017. USA: IEEE. pp. 936−44. doi: 10.1109/CVPR.2017.106 |
| [21] |
He K, Gkioxari G, Dollár P, Girshick RB. 2017. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 2017. USA: IEEE. pp. 2980−88. doi: 10.1109/ICCV.2017.322 |
| [22] |
Redmon J, Divvala SK, Girshick RB, Farhadi A. 2016. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 27−30 June 2016. USA: IEEE. pp. 779−88. doi: 10.1109/CVPR.2016.91 |
| [23] |
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, et al. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7−12 June 2015. USA: IEEE. pp. 1−9. doi: 10.1109/CVPR.2015.7298594 |
| [24] |
Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21−26 July 2017. USA: IEEE. pp. 6517−25. doi: 10.1109/CVPR.2017.690 |
| [25] |
Bochkovskiy A, Wang CY, Liao HYM. 2020. YOLOv4: optimal speed and accuracy of object detection. |
| [26] |
Jocher G, Stoken A, Borovec J, Stan C, Liu C, et al. 2020. Ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements |
| [27] |
Zhang Z, Chen P, Huang Y, Dai L, Xu F, et al. 2024. Railway obstacle intrusion warning mechanism integrating YOLO-based detection and risk assessment. |
| [28] |
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, et al. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications. |
| [29] |
Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen LC. 2018. MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18−22 June 2018. USA: IEEE. pp. 4510−20. doi: 10.1109/CVPR.2018.00474 |
| [30] |
Howard A, Sandler M, Chen B, Wang W, Chen LC, et al. 2019. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 27 October − 2 November 2019. USA: IEEE. pp. 1314−24. doi: 10.1109/ICCV.2019.00140 |
| [31] |
Zhang X, Zhou X, Lin M, Sun J. 2018. ShuffleNet: an extremely efficient convolutional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18−22 June 2018. USA: IEEE. pp. 6848−56. doi: 10.1109/CVPR.2018.00716 |
| [32] |
Ma N, Zhang X, Zheng HT, Sun J. 2018. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In Lecture Notes in Computer Science, eds. Ferrari V, Hebert M, Sminchisescu C, Weiss Y. vol 11218. Cham: Springer. pp. 122−38. doi: 10.1007/978-3-030-01264-9_8 |
| [33] |
Mao B, Tang F, Kawamoto Y, Kato N. 2022. AI models for green communications towards 6G. |
| [34] |
Mao B, Tang F, Fadlullah ZM, Kato N. 2021. An intelligent route computation approach based on real-time deep learning strategy for software defined communication systems. |
| [35] |
Cha YJ, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. 2018. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. |
| [36] |
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. 2010. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision 88:303−38 |
| [37] |
Jiang D. 2020. Network architecture of yolov3, yolov4, and yolov5s. https://blog.csdn.net/nan355655600/article/details/107852288 |
| [38] |
He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27−30 June 2016. USA: IEEE. pp. 770−78. doi: 10.1109/CVPR.2016.90 |
| [39] |
He K, Zhang X, Ren S, Sun J. 2014. Spatial pyramid pooling in deep convolutional networks for visual recognition. |
| [40] |
Jocher G, Kwon Y, Veitch-Michaelis J, Suess D, et al. 2021. Ultralytics/yolov3: v9.5. 0 - YOLOv5 v5.0 release compatibility update for YOLOv3. |
| [41] |
Misra D. 2019. Mish: a self regularized non-monotonic activation function. |
| [42] |
Liu S, Qi L, Qin H, Shi J, Jia J. 2018. Path aggregation network for instance segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18−22 June 2018. USA: IEEE. pp. 8759−68. doi: 10.1109/CVPR.2018.00913 |
| [43] |
Zheng Z, Wang P, Liu W, Li J, Ye R, et al. 2020. Distance-IoU loss: faster and better learning for bounding box regression. |
| [44] |
Ge Z, Liu S, Wang F, Li Z, Sun J. 2021. YOLOX: exceeding YOLO series in 2021. |
| [45] |
Long X, Deng K, Wang G, Zhang Y, Dang Q, et al. 2020. PP-YOLO: an effective and efficient implementation of object detector. |
| [46] |
Huang X, Wang X, Lv W, Bai X, Long X, et al. 2021. PP-YOLOv2: a practical object detector. |
| [47] |
Han K, Wang Y, Tian Q, Guo J, Xu C, et al. 2020. GhostNet: more features from cheap operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13-19 June 2020. USA: IEEE. pp. 1577−86. doi: 10.1109/CVPR42600.2020.00165 |