[1]

Mirchandani P, Head L. 2001. A real-time traffic signal control system: architecture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies 9:415−32

doi: 10.1016/S0968-090X(00)00047-4
[2]

Rasheed F, Yau KA, Noor RM, Wu C, Low YC. 2020. Deep reinforcement learning for traffic signal control: a review. IEEE Access 8:208016−44

doi: 10.1109/ACCESS.2020.3034141
[3]

Qin Z, Ji A, Sun Z, Wu G, Hao P, et al. 2024. Game theoretic application to intersection management: a literature review. IEEE Transactions on Intelligent Vehicles 00:1−19

doi: 10.1109/TIV.2024.3379986
[4]

Maslekar N, Mouzna J, Boussedjra M, Labiod H. 2013. CATS: an adaptive traffic signal system based on car-to-car communication. Journal of Network and Computer Applications 36:1308−15

doi: 10.1016/j.jnca.2012.05.011
[5]

Hoogendoorn S, Knoop V. 2013. Traffic flow theory and modelling. In The transport system and transport policy: An introduction, eds. van Wee B, Annema JA, Banister D, Pudāne B. Cheltenham, UK: Edward Elgar Publishing. pp. 125–59

[6]

Miller A. 1963. A computer control system for traffic networks. Proceedings of the International Symposium on the Theory of Traffic Flow and Transportation, London, UK, 1963. London, UK: Organisation for Economic Co-operation and Development. https://trid.trb.org/View/612653

[7]

Zheng X, Recker W, Chu L. 2010. Optimization of control parameters for adaptive traffic-actuated signal control. Journal of Intelligent Transportation Systems 14:95−108

doi: 10.1080/15472451003719756
[8]

Zheng X, Chu L. 2008. Optimal parameter settings for adaptive traffic-actuated signal control. 2008 11th International IEEE Conference on Intelligent Transportation Systems. October 12-15, 2008, Beijing, China. USA: IEEE. pp. 105−10. doi: 10.1109/ITSC.2008.4732676

[9]

Sims AG, Dobinson KW. 1980. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. IEEE Transactions on Vehicular Technology 29:130−37

doi: 10.1109/T-VT.1980.23833
[10]

Gartner N. 1983. OPAC: A demand-responsive strategy for traffic signal control. Transportation Research Record, No. 906. pp. 75–81

[11]

Bing B, Carter A. 1995. SCOOT: The world's foremost adaptive TRAFFIC control system. Traffic Technology International '95. Surrey, UK: UK and International Press. https://trid.trb.org/View/415757

[12]

Henry JJ, Farges JL, Tuffal J. 1984. The PRODYN real time traffic algorithm. In Control in Transportation Systems. Proceedings of the 4th IFAC/IFIP/IFORS Conference, Baden-Baden, Federal Republic of Germany, 20–22 April 1983. Germany: Elsevier. pp. 305–10. doi: 10.1016/B978-0-08-029365-3.50048-1

[13]

Brilon W, Wietholt T. 2013. Experiences with adaptive signal control in Germany. Transportation Research Record: Journal of the Transportation Research Board 2356:9−16

doi: 10.1177/0361198113235600102
[14]

Lertworawanich P, Unhasut P. 2021. A CO emission-based adaptive signal control for isolated intersections. Journal of the Air & Waste Management Association 71:564−85

doi: 10.1080/10962247.2020.1862940
[15]

Mondal MA, Rehena Z. 2022. Priority-based adaptive traffic signal control system for smart cities. SN Computer Science 3:417

doi: 10.1007/s42979-022-01316-5
[16]

Lee WH, Wang HC. 2022. A person-based adaptive traffic signal control method with cooperative transit signal priority. Journal of Advanced Transportation 2022:2205292

doi: 10.1155/2022/2205292
[17]

Jing P, Huang H, Chen L. 2017. An adaptive traffic signal control in a connected vehicle environment: a systematic review. Information 8:101

doi: 10.3390/info8030101
[18]

Liu Z. 2007. A survey of intelligence methods in urban traffic signal control. International Journal of Computer Science and Network Security 7(7):105−12

[19]

Mannion P, Duggan J, Howley E. 2016. An experimental review of reinforcement learning algorithms for adaptive traffic signal control. In Autonomic Road Transport Support Systems, edds. McCluskey T, Kotsialos A, Müller J, Klügl F, Rana O, et al. Cham: Springer International Publishing. pp. 47−66. doi: 10.1007/978-3-319-25808-9_4

[20]

La P, Bhatnagar S. 2011. Reinforcement learning with function approximation for traffic signal control. IEEE Transactions on Intelligent Transportation Systems 12:412−21

doi: 10.1109/TITS.2010.2091408
[21]

Mohamad Alizadeh Shabestary S, Abdulhai B. 2022. Adaptive traffic signal control with deep reinforcement learning and high dimensional sensory inputs: case study and comprehensive sensitivity analyses. IEEE Transactions on Intelligent Transportation Systems 23:20021−35

doi: 10.1109/TITS.2022.3179893
[22]

Liang X, Du X, Wang G, Han Z. 2019. A deep reinforcement learning network for traffic light cycle control. IEEE Transactions on Vehicular Technology 68:1243−53

doi: 10.1109/TVT.2018.2890726
[23]

Ge H, Song Y, Wu C, Ren J, Tan G. 2019. Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control. IEEE Access 7:40797−809

doi: 10.1109/ACCESS.2019.2907618
[24]

Haddad TA, Hedjazi D, Aouag S. 2022. A deep reinforcement learning-based cooperative approach for multi-intersection traffic signal control. Engineering Applications of Artificial Intelligence 114:105019

doi: 10.1016/j.engappai.2022.105019
[25]

Chu T, Wang J, Codecà L, Li Z. 2020. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems 21:1086−95

doi: 10.1109/TITS.2019.2901791
[26]

Bouktif S, Cheniki A, Ouni A. 2021. Traffic signal control using hybrid action space deep reinforcement learning. Sensors 21:2302

doi: 10.3390/s21072302
[27]

Du Y, ShangGuan W, Rong D, Chai L. 2019. RA-TSC: learning adaptive traffic signal control strategy via deep reinforcement learning. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), October 27–30, 2019. Auckland, New Zealand. USA: IEEE. pp. 3275–80. doi: 10.1109/itsc.2019.8916967

[28]

Kumar N, Mittal S, Garg V, Kumar N. 2022. Deep reinforcement learning-based traffic light scheduling framework for SDN-enabled smart transportation system. IEEE Transactions on Intelligent Transportation Systems 23:2411−21

doi: 10.1109/TITS.2021.3095161
[29]

Li L, Lv Y, Wang FY. 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica Sinica 3:247−54

doi: 10.1109/JAS.2016.7508798
[30]

Kumar N, Rahman SS, Dhakad N. 2021. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems 22:4919−28

doi: 10.1109/TITS.2020.2984033
[31]

Ma D, Zhou B, Song X, Dai H. 2022. A deep reinforcement learning approach to traffic signal control with temporal traffic pattern mining. IEEE Transactions on Intelligent Transportation Systems 23:11789−800

doi: 10.1109/TITS.2021.3107258
[32]

Aslani M, Mesgari MS, Wiering M. 2017. Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies 85:732−52

doi: 10.1016/j.trc.2017.09.020
[33]

Wei H, Zheng G, Gayah V, Li Z. 2019. A survey on traffic signal control methods. arXiv Preprint

doi: 10.48550/arXiv.1904.08117
[34]

El-Tantawy S, Abdulhai B. 2010. An agent-based learning towards decentralized and coordinated traffic signal control. 13th International IEEE Conference on Intelligent Transportation Systems, September 19−22, 2010, Funchal, Portugal. USA: IEEE. pp. 665−70. doi: 10.1109/ITSC.2010.5625066

[35]

Khamis MA, Gomaa W. 2012. Enhanced multiagent multi-objective reinforcement learning for urban traffic light control. 2012 11th International Conference on Machine Learning and Applications, December 12−15, 2012, Boca Raton, FL, USA. USA: IEEE. pp. 586−91. doi: 10.1109/ICMLA.2012.108

[36]

Mousavi SS, Schukat M, Howley E. 2017. Traffic light control using deep policy-gradient and value-function-based reinforcement learning. IET Intelligent Transport Systems 11:417−23

doi: 10.1049/iet-its.2017.0153
[37]

Zhao J, Yao T, Zhang C, Shafique MA. 2024. Signal control for overflow prevention at intersections using partial connected vehicle data. Transportmetrica A: Transport Science 1−31

doi: 10.1080/23249935.2024.2361648
[38]

Ma C, Yu C, Zhang C, Yang X. 2023. Signal timing at an isolated intersection under mixed traffic environment with self-organizing connected and automated vehicles. Computer-Aided Civil and Infrastructure Engineering 38:1955−72

doi: 10.1111/mice.12961
[39]

Yao T, Zhang C, Zhao J, Gupta A, Mondal S. 2023. Adaptive signal control for overflow prevention at isolated intersections based on fuzzy control. Transportation Research Record: Journal of the Transportation Research Board 2677:1387−401

doi: 10.1177/03611981221143380
[40]

Noaeen M, Naik A, Goodman L, Crebo J, Abrar T, et al. 2022. Reinforcement learning in urban network traffic signal control: a systematic literature review. Expert Systems with Applications 199:116830

doi: 10.1016/j.eswa.2022.116830
[41]

Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. 2017. Deep reinforcement learning: a brief survey. IEEE Signal Processing Magazine 34:26−38

doi: 10.1109/MSP.2017.2743240
[42]

Bellman R. 1952. On the theory of dynamic programming. Proceedings of the National Academy of Sciences of the United States of America 38:716−19

doi: 10.1073/pnas.38.8.716
[43]

Van Hasselt H, Guez A, Silver D. 2016. Deep reinforcement learning with double Q-learning. Proceedings of the AAAI Conference on Artificial Intelligence 30:2094−100

doi: 10.1609/aaai.v30i1.10295
[44]

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, et al. 2015. Human-level control through deep reinforcement learning. Nature 518:529−33

doi: 10.1038/nature14236
[45]

Schaul T, Quan J, Antonoglou I, Silver D. 2015. Prioritized experience replay. arXiv Preprint

doi: 10.48550/arXiv.1511.05952
[46]

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, et al. 2016. Dueling network architectures for deep reinforcement learning. International Conference on Machine Learning, New York, USA, 2016. New York, USA: PMLR. pp. 1995–2003. https://proceedings.mlr.press/v48/wangf16.pdf

[47]

Bellemare MG, Dabney W, Munos R. 2017. A distributional perspective on reinforcement learning. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. PMLR. pp. 449–58. https://proceedings.mlr.press/v70/bellemare17a/bellemare17a.pdf

[48]

Fortunato M, Azar MG, Piot B, Menick J, Osband I, et al. 2017. Noisy networks for exploration. arXiv Preprint

doi: 10.48550/arXiv.1706.10295
[49]

Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, et al. 2018. Rainbow: combining improvements in deep reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence 32(1):3215−222

doi: 10.1609/aaai.v32i1.11796
[50]

Gu J, Fang Y, Sheng Z, Wen P. 2020. Double deep Q-network with a dual-agent for traffic signal control. Applied Sciences 10:1622

doi: 10.3390/app10051622
[51]

Park S, Han E, Park S, Jeong H, Yun I. 2021. Deep Q-network-based traffic signal control models. PLoS One 16:e0256405

doi: 10.1371/journal.pone.0256405
[52]

Ducrocq R, Farhi N. 2023. Deep reinforcement Q-learning for intelligent traffic signal control with partial detection. International Journal of Intelligent Transportation Systems Research 21:192−206

doi: 10.1007/s13177-023-00346-4
[53]

Nishi T, Otaki K, Hayakawa K, Yoshimura T. 2018. Traffic signal control based on reinforcement learning with graph convolutional neural nets. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), November 4−7, 2018, Maui, HI, USA. USA: IEEE. pp. 877−83. doi: 10.1109/ITSC.2018.8569301

[54]

Zang X, Yao H, Zheng G, Xu N, Xu K, et al. 2020. MetaLight: value-based meta-reinforcement learning for traffic signal control. Proceedings of the AAAI Conference on Artificial Intelligence 34:1153−60

doi: 10.1609/aaai.v34i01.5467
[55]

Steingrover M, Schouten R, Peelen S, Nijhuis E, Bakker B. 2005. Reinforcement learning of traffic light controllers adapting to traffic congestion. Proceedings of the Seventeenth Belgium-Netherlands Conference on Artificial Intelligence, Brussels, Belgium, October 17−18, 2005.

[56]

Gokulan BP, Srinivasan D. 2010. Distributed geometric fuzzy multiagent urban traffic signal control. IEEE Transactions on Intelligent Transportation Systems 11:714−27

doi: 10.1109/TITS.2010.2050688
[57]

Salkham A. 2010. Decentralized optimization of fluctuating urban traffic using reinforcement learning. PhD thesis. Trinity College Dublin, UK

[58]

Xu LH, Xia XH, Luo Q. 2013. The study of reinforcement learning for traffic self-adaptive control under multiagent Markov game environment. Mathematical Problems in Engineering 2013:962869

doi: 10.1155/2013/962869
[59]

Salkham A, Cunningham R, Garg A, Cahill V. 2008. A collaborative reinforcement learning approach to urban traffic control optimization. 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, December 9−12, 2008, Sydney, NSW, Australia. USA: IEEE. pp. 560−66. doi: 10.1109/WIIAT.2008.88

[60]

Kuleshov V, Precup D. 2014. Algorithms for multi-armed bandit problems. arXiv Preprint

doi: 10.48550/arXiv.1402.6028
[61]

Webster FV. 1958. Traffic signal settings. Road Research Technical Paper, No. 39. London, UK: Department of Scientific and Industrial Research.

[62]

Varaiya P. 2013. Max pressure control of a network of signalized intersections. Transportation Research Part C: Emerging Technologies 36:177−95

doi: 10.1016/j.trc.2013.08.014