[1]

Ministry of Agriculture, Forestry and Fisheries. 2024. Summary of the annual report on food, agriculture and rural areas in Japan 2023. www.maff.go.jp/j/wpaper/w_maff/r5/attach/pdf/index-4.pdf

[2]

Kogiso K, Kaneko S. 2015. The aroma characteristics and food processing of venison from Nagano. Journal of Nagano Prefectural College 69:13−19

[3]

Yamazaki S, Kogiso K, Ogasawara H, Takemura T. 2016. Analysis enabling visualization of texture: A case study of research and support using texture testers [in Japanese]. Preprints of the Presentation of Results, Nagano Prefectural Industrial Technology Center/Nagano Prefectural College of Technology. pp. 21–22

[4]

Chakanya C, Arnaud E, Muchenje V, Hoffman LC. 2020. Fermented meat sausages from game and venison: what are the opportunities and limitations? Journal of the Science of Food and Agriculture 100:5023−31

doi: 10.1002/jsfa.9053
[5]

Takeda S, Kaneko S, Sogawa K, Ahhmed AM, Enomoto H, et al. 2020. Isolation, evaluation, and identification of angiotensin I-converting enzyme inhibitory peptides from game meat. Foods 9:1168

doi: 10.3390/foods9091168
[6]

Kogiso K. 2023. Assessment of functional components in sika deer and wild boar meats with improvement in processing and flavor and a novel analytical prediction method. Applied Food Research 3:100343

doi: 10.1016/j.afres.2023.100343
[7]

Lenz CA, Reineke K, Knorr D, Vogel RF. 2015. High pressure thermal inactivation of Clostridium botulinum type E endospores − kinetic modeling and mechanistic insights. Frontiers in Microbiology 6:652

doi: 10.3389/fmicb.2015.00652
[8]

Mora L, Toldrá F. 2023. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Current Opinion in Food Science 49:100973

doi: 10.1016/j.cofs.2022.100973
[9]

Kurosaki K, Wang F, Yamano H, Yoshida S, Koizumi S, et al. 2020. The current situation and problems of abattoirs for wild deer. Nihon Chikusan Gakkaiho (Journal of the Japanese Society of Animal Science) 91:233−39

doi: 10.2508/chikusan.91.233
[10]

Ministry of Agriculture, Forestry and Fisheries. n. d. Traditional Japanese Foods: Soy sauce, miso, and other fermented seasonings. www.maff.go.jp/e/policies/market/dento_syoku/bunrui/syouyu-miso.html

[11]

Kim IS, Yang WS, Kim CH. 2021. Beneficial effects of soybean-derived bioactive peptides. International Journal of Molecular Sciences 22:8570

doi: 10.3390/ijms22168570
[12]

Chatterjee C, Gleddie S, Xiao CW. 2018. Soybean bioactive peptides and their functional properties. Nutrients 10:1211

doi: 10.3390/nu10091211
[13]

Masuoka N, Lei C, Li H, Hisatsune T. 2021. Influence of imidazole-dipeptides on cognitive status and preservation in Elders: A narrative review. Nutrients 13:397

doi: 10.3390/nu13020397
[14]

Maemura H, Goto K, Yoshioka T, Sato M, Takahata Y, et al. 2006. Effects of carnosine and anserine supplementation on relatively high-intensity endurance performance. International Journal of Sport and Health Science 4:86−94

doi: 10.5432/ijshs.4.86
[15]

Tanida M, Shen J, Kubomura D, Nagai K. 2010. Effects of anserine on the renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Physiological Research 59:177−85

doi: 10.33549/physiolres.931623
[16]

Kogiso K, Sakata S, Tomizawa A, Suzuka H, Saito A, et al. 2023. Taste and safety of processed Nagano venison in very short-term meat sauce preparation. Journal of Japan Deer Studies 14:60−66

[17]

Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, et al. 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences 106:5−28

doi: 10.1093/toxsci/kfn121
[18]

Ha NM, Tran SH, Shim YH, Kang K. 2022. Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Applied Biological Chemistry 65:18

doi: 10.1186/s13765-022-00685-y
[19]

Cho J, Park Y. 2024. Development of aging research in Caenorhabditis elegans: From molecular insights to therapeutic application for healthy aging. Current Research in Food Science 9:100809

doi: 10.1016/j.crfs.2024.100809
[20]

Kouriki-Nagatomo H, Kondo T, Nagahama K, Fukui K, Kurogi K, et al. 2019. Effect of retort processing and storage on imidazole dipeptide content of chicken meat. Nippon Shokuhin Kagaku Kogaku Kaishi (Journal of the Japanese Society for Food Science and Technology) 66:210−14

doi: 10.3136/nskkk.66.210
[21]

Yamazaki S, Kaneko S, Takahashi Y, Yoshikawa S. 2016. Survey and analysis on components and physical properties of deer meats captured in Nagano Prefecture. Research Reports of Nagano Prefecture General Industrial Technology Center Food Technology Department 11:173−77

[22]

Alelyunas Y, Roman GT, Johnson JS, Doneanu C, Wrona M. 2015. High throughput analysis at microscale: Performance of ionKey/MS with Xevo G2-XS QTof under rapid gradient conditions. Journal of Applied Bioanalysis 1:128−35

doi: 10.17145/jab.15.021
[23]

Matsuda H, Nagaoka T, Morita H, Osajima K, Osajima Y. 1992. Angiotensin I converting enzyme inhibitory peptides generated from sardine muscle by protease for food industry. Journal of the Japan Food Industry Society 39:678−83 (in Japanese)

doi: 10.3136/nskkk1962.39.678
[24]

Matsui T, Li CH, Osajima Y. 1999. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. Journal of Peptide Science 5:289−97

doi: 10.1002/(SICI)1099-1387(199907)5:7<289::AID-PSC196>3.0.CO;2-6
[25]

Ohta T, Iwashita A, Sasaki S, Kawamura Y. 1997. Antihypertensive action of the orally administered protease hydrolysates of chum salmon head and their angiotensin I-converting enzyme inhibitory peptides. Food Science and Technology International, Tokyo 3:339−43

doi: 10.3136/fsti9596t9798.3.339
[26]

Matsui T, Yukiyoshi A, Doi S, Sugimoto H, Yamada H, et al. 2002. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. The Journal of Nutritional Biochemistry 13:80−86

doi: 10.1016/S0955-2863(01)00198-X
[27]

Li CH, Matsui T, Matsumoto K, Yamasaki R, Kawasaki T. 2002. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. Journal of Peptide Science 8:267−74

doi: 10.1002/psc.387
[28]

Kogiso K, Furuta K, Okazaki M. 2018. Identification of the angiotensin-converting enzyme inhibitory activity peptide of the germinated brown rice sake-lees by LC-MS analysis using ACD/MS Workbook Suite. Journal of Nagano Prefectural College 72:15−22

[29]

Lam LH, Shimamura T, Sakaguchi K, Noguchi K, Ishiyama M, et al. 2007. Assay of angiotensin I-converting enzyme-inhibiting activity based on the detection of 3-hydroxybutyric acid. Analytical Biochemistry 364:104−11

doi: 10.1016/j.ab.2007.02.017
[30]

Lam LH, Shimamura T, Manabe S, Ishiyama M, Ukeda H. 2008. Assay of angiotensin I-converting enzyme-inhibiting activity based on the detection of 3-hydroxybutyrate with water-soluble tetrazolium salt. Analytical Sciences 24:1057−60

doi: 10.2116/analsci.24.1057
[31]

Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71−94

doi: 10.1093/genetics/77.1.71
[32]

Grollemund PM, Poupet C, Comte É, Bonnet M, Veisseire P, et al. 2024. A clustering-based survival comparison procedure designed to study the Caenorhabditis elegans model. Scientific Reports 14:28257

doi: 10.1038/s41598-024-79913-y
[33]

Mitchell DH, Stiles JW, Santelli J, Sanadi DR. 1979. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. Journal of Gerontology 34:28−36

doi: 10.1093/geronj/34.1.28
[34]

Huang C, Xiong C, Kornfeld K. 2004. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 101:8084−89

doi: 10.1073/pnas.0400848101
[35]

Ramot D, Johnson BE, Berry TL Jr, Carnell L, Goodman MB. 2008. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3:e2208

doi: 10.1371/journal.pone.0002208
[36]

Kanda Y. 2013. EZR: Easy R on R commander. Bone Marrow Transplantation 48:452−58

doi: 10.1038/bmt.2012.244
[37]

Nakahara T, Sano A, Yamaguchi H, Sugimoto K, Chikata H, et al. 2010. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. Journal of Agricultural and Food Chemistry 58:821−27

doi: 10.1021/jf903261h
[38]

Li FJ, Yin LJ, Cheng YQ, Saito M, Yamaki K, et al. 2010. Angiotensin I-Converting Enzyme Inhibitory Activities of Extracts from Commercial Chinese Style Fermented Soypaste. Food Technology 44(2):167−72

doi: 10.6090/jarq.44.167
[39]

Okamoto A, Hanagata H, Kawamura Y, Yanagida F. 1995. Anti-hypertensive substances in fermented soybean, natto. Plant Foods for Human Nutrition 47(1):39−47

doi: 10.1007/BF01088165
[40]

Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M. 2003. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Bioscience, Biotechnology, and Biochemistry 67(6):1278−83

doi: 10.1271/bbb.67.1278
[41]

Kubota D. 2012. Comparative Study on Antihypertensive Activity of Meat Hydrolysates Sourced from Bovine, Porcine and Poultry. Bulletin of the Faculty of Agriculture, University of Miyazaki 58:43−50

[42]

Lunow D, Kaiser S, Brückner S, Gotsch A, Henle T. 2013. Selective release of ACE-inhibiting tryptophan-containing dipeptides from food proteins by enzymatic hydrolysis. European Food Research and Technology 237:27−37

doi: 10.1007/s00217-013-2014-x
[43]

Song CC, Qiao BW, Zhang Q, Wang CX, Fu YH, et al. 2021. Study on the domain selective inhibition of angiotensin-converting enzyme (ACE) by food-derived tyrosine-containing dipeptides. Journal of Food Biochemistry 45:e13779

doi: 10.1111/jfbc.13779
[44]

Suetsuna K, Maekawa K, Chen JR. 2004. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry 15:267−72

doi: 10.1016/j.jnutbio.2003.11.004
[45]

Ferguson AA, Roy S, Kormanik KN, Kim Y, Dumas KJ, et al. 2013. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans. PLoS Genetics 9:e1004020

doi: 10.1371/journal.pgen.1004020
[46]

Manzanares P, Martínez R, Garrigues S, Genovés S, Ramón D, et al. 2018. Tryptophan-containing dual neuroprotective peptides: prolyl endopeptidase inhibition and Caenorhabditis elegans protection from β-amyloid peptide toxicity. International Journal of Molecular Sciences 19:1491

doi: 10.3390/ijms19051491
[47]

Boldyrev AA, Aldini G, Derave W. 2013. Physiology and pathophysiology of carnosine. Physiological Reviews 93:1803−45

doi: 10.1152/physrev.00039.2012
[48]

Zhou KI, Pincus Z, Slack FJ. 2011. Longevity and stress in C. elegans: regulation of DAF-16 by peptide binding and post-translational modifications. Cell Metabolism 14:161−72

doi: 10.18632/aging.100367
[49]

Geissler S, Zwarg M, Knütter I, Markwardt F, Brandsch M. 2010. The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. The FEBS Journal 277:790−95

doi: 10.1111/j.1742-4658.2009.07528.x
[50]

Meissner B, Boll M, Daniel H, Baumeister R. 2004. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. Journal of Biological Chemistry 279:36739−45

doi: 10.1074/jbc.m403415200
[51]

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366:461−64

doi: 10.1038/366461a0
[52]

Kumar S, Dietrich N, Kornfeld K. 2016. Angiotensin converting enzyme (ACE) inhibitor extends Caenorhabditis elegans life span. PLoS Genetics 12(2):e1005866

doi: 10.1371/journal.pgen.1005866
[53]

Egan BM, Pohl F, Anderson X, Williams SC, Adodo IG, et al. 2024. The ACE inhibitor captopril inhibits ACN-1 to control dauer formation and aging. Development 151(3):dev202146

doi: 10.1242/dev.202146
[54]

Khan MTH, Dedachi K, Matsui T, Kurita N, Borgatti M, et al. 2012. Dipeptide inhibitors of thermolysin and angiotensin I-converting enzyme. Current Topics in Medicinal Chemistry 12:1748−62

doi: 10.2174/156802612803989246